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Abstract: The convergence of artificial intelligence (AI) and sixth-generation (6G) wireless networks is poised 

to transform modern medicine from data acquisition to clinical diagnosis. This paper provides a comprehensive 

overview of the theoretical foundations and practical applications of AI and 6G in healthcare. We discuss how 

AI techniques, including machine learning and advanced data analytics, can harness the unprecedented speed, 

bandwidth, and ultralow latency of 6G networks to enable real-time medical data processing and decision 

support. Key enabling technologies such as the Internet of Things (IoT), edge computing, and big data analytics 

are examined in the context of an integrated AI+6G healthcare ecosystem. We explore generalized medical 

domains ranging from remote patient monitoring and telemedicine to intelligent medical imaging, robotic 

surgery, and smart hospitals. For each domain, we outline how AI algorithms convert raw data into diagnostic or 

predictive insights, and how 6G networking capabilities facilitate these processes with high reliability and 

security. Challenges regarding data privacy, security, interoperability, and the need for explainable AI in clinical 

settings are discussed alongside emerging solutions (e.g., federated learning and blockchain). Future research 

directions are identified to guide the responsible and effective deployment of AI-driven healthcare services over 

6G networks. By fusing AI’s analytic power with 6G’s communication performance, the healthcare industry can 

move toward more proactive, personalized, and accessible patient care on a global scale. 

Keywords— Artificial intelligence; 6G; healthcare; telemedicine; smart hospitals; IoT; edge computing; 

explainable AI; federated learning; robotic surgery. 

1. INTRODUCTION 

Healthcare is undergoing a digital transformation driven by advances in data analytics and 

communication technologies. Artificial intelligence (AI) has emerged as a powerful tool in 

medicine, capable of analyzing complex clinical data and supporting diagnostic decision-

making with unprecedented accuracy. At the same time, wireless networking is reaching new 

frontiers with the development of sixth-generation (6G) mobile networks, which promise 

ultra-fast data rates, near-zero latency, massive connectivity, and pervasive coverage. The 

intersection of AI and 6G presents a unique opportunity to revolutionize healthcare delivery – 

enabling “smart” medical services that seamlessly convert raw data to diagnosis in real time, 

regardless of physical distances [3][6]. 

In traditional settings, medical data from imaging devices, monitors, or patient records are 

often soloed and analyzed retrospectively, leading to delays in diagnosis. By contrast, AI 

algorithms can rapidly interpret streaming data (e.g. vital signs, sensor readings, medical 
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images), but they require robust connectivity to gather distributed data and deliver results 

instantly to clinicians or even directly to patients. In essence, 6G’s communication prowess 

can unleash AI applications in medicine that were previously impractical due to network 

constraints[7][8]. 

Researchers have begun examining this convergence. For example, Ullah et al. [1] present a 

comprehensive survey of 5G/6G enhancements for healthcare, highlighting that reliable 

ultrafast connectivity is critical for next-generation medical environments. They note that the 

development of 6G infrastructure is aided by technologies like blockchain, virtual reality 

(VR), and IoT, and predict that future 6G-driven hospitals will enable seamless data sharing 

and intelligent services. Similarly, healthcare futurists anticipate AI-driven care to rely 

heavily on 6G networks to enhance service quality and responsiveness.  By integrating AI 

algorithms into 6G-connected systems, healthcare providers can achieve continuous 

monitoring, pervasive decision support, and collaborative care on a global scale. [9][10][11] 

 

 

Figure 1: Flowchart of 6G integration with smart healthcare. Key steps include assessing 

medical needs for 6G (e.g. remote monitoring, telehealth), ensuring infrastructure readiness 

for high-speed low-latency networking, implementing data collection and communication 

mechanisms, deploying AI analytics (including explainable AI) for real-time insights, 

expanding telehealth services, and enforcing robust security protocols 

As illustrated in Figure 1, realizing the benefits of AI and 6G in medicine requires a 

multilayered approach. First, healthcare needs must be identified where 6G’s capabilities 
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(such as real-time patient monitoring or remote interventions) can make a difference. Next, 

infrastructure must be prepared – from installing 6G small cells and antennas in hospitals to 

upgrading devices and cloud platforms. AI and data analytics pipelines are then implemented 

to turn raw data into meaningful predictions or diagnoses. Telemedicine services leveraging 

6G can be deployed to connect patients and providers virtually. Throughout this process, 

security and privacy measures (like encryption and blockchain) are essential to protect 

sensitive medical data. The end result is a healthcare ecosystem in which data flows securely 

at high speed from medical sensors to AI models to caregivers, enabling faster and more 

informed diagnoses[13]. 

In the rest of this paper, we delve deeper into the theoretical underpinnings of AI in 

healthcare and 6G networking (Section 2), then examine how their convergence enables new 

medical applications (Section 3). We cover a broad range of domains without focusing on 

any single specialty, to emphasize generalized capabilities rather than niche case studies. 

Section 4 discusses challenges such as data privacy, the need for explainable and trustworthy 

AI, and interoperability issues in an AI+6G ecosystem. Finally, Section 5 concludes the paper 

and outlines future research directions toward safely and effectively integrating AI with 6G in 

healthcare. 

2. THEORETICAL FOUNDATIONS OF AI AND 6G IN HEALTHCARE 

In order to understand the transformative potential of AI and 6G in medicine, it is first 

necessary to review their individual foundations and the context for convergence. This 

section provides background on AI in modern medicine, key features of 6G networks, and the 

enabling technologies (IoT, edge computing, big data) that link them. We then outline a 

conceptual framework for integrating AI algorithms with 6G infrastructure in healthcare 

settings[15][16][17]. 

2.1 Artificial Intelligence in Modern Medicine 

Artificial intelligence (AI) in medicine refers to computational systems – often driven by 

machine learning (ML) and deep learning – that perform tasks normally requiring human 

intelligence, such as interpreting data, making predictions, or supporting decisions. In recent 

years, AI has made remarkable strides in healthcare, fuelled by the availability of big data 

(e.g. electronic health records, medical images, and genomic data) and advances in 

algorithms and computing power. AI systems can uncover complex patterns in multimodal 

medical data that clinicians might miss, enabling earlier diagnoses and personalized 

treatments. Current applications of AI in medicine include: 

• Medical imaging analysis: AI models (especially deep convolution neural networks) can 

analyze radiological images (X-rays, CT, MRI) or pathology slides to detect abnormalities 

like tumours, often with accuracy comparable to expert radiologists. For instance, deep 

learning algorithms have achieved high performance in diagnosing pneumonia from chest X-

rays and identifying diabetic retinopathy from retinal images. In some research studies, AI 

has matched or modestly outperformed clinicians in diagnostic tasks, though real-world 

performance remains an area of investigation[18]. 
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• Clinical decision support: AI-driven decision support systems assist clinicians by 

synthesizing patient data and suggesting diagnoses or treatment options. Using electronic 

health record data, machine learning models can predict outcomes such as risk of 

complications, readmission, or disease progression. For example, AI algorithms have been 

used to predict sepsis in hospitalized patients hours before clinicians recognize it, enabling 

earlier intervention. Large language models (LLMs), a recent AI development, can interpret 

clinical notes or answer medical queries, showing promise to support practitioners with 

evidence-based insights (though issues of accuracy and bias must be managed)[19][20]. 

• Precision medicine: AI is accelerating drug discovery and genomics. Machine learning 

models can analyze genomic and proteomic data to identify disease biomarkers or drug 

targets. In oncology, AI helps in matching patients to clinical trials or therapies based on their 

molecular profiles. Emerging AI techniques also facilitate in silico drug screening and 

generative design of new pharmaceutical compounds. These tasks involve processing 

enormous datasets – a scenario where high-performance computing and fast data access are 

beneficial. 

• Operational optimization: Beyond direct clinical care, AI is used for optimizing healthcare 

operations such as scheduling, staffing, and resource allocation. Predictive models forecast 

patient admissions and procedure durations, helping hospitals manage beds and operating 

rooms efficiently. AI-based analytics on population health data also guide public health 

decisions and epidemiological surveillance. 

Despite these advances, integrating AI into routine clinical practice faces challenges. Many 

AI models function as “black boxes,” making it hard for clinicians to trust their 

recommendations without transparent reasoning. This has spurred interest in explainable AI 

(XAI) in healthcare – AI systems that can provide understandable justifications for their 

outputs. Ensuring AI algorithms are unbiased, validated across diverse populations, and 

compliant with medical regulations is also critical for safety and ethics. Furthermore, training 

powerful AI models often requires aggregation of data from multiple hospitals or devices, 

raising concerns about data privacy and ownership. These issues will be revisited in Section 

4. Nonetheless, the trajectory is clear: AI is set to become increasingly entwined with 

healthcare delivery, and its success will depend in part on the supporting digital infrastructure 

– notably, the networks that move data and connect AI systems with end-

users[21][22][23][24]. 

2.2 6G Networks: Next-Generation Connectivity for Healthcare 

6G wireless networks represent the upcoming evolution beyond the current 5G standard, 

expected to become operational towards the end of this decade. While still in the research and 

definition phase, 6G is envisioned to vastly outperform 5G across multiple dimensions of 

network capability. In healthcare, where lives can depend on timely data and reliable 

communication, these advancements could be game-changing. The key features anticipated in 

6G include: 
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• Extreme data rates: 6G aims to support peak download speeds on the order of 1 terabit per 

second (Tbps) and user experienced speeds in the gigabits per second. This is roughly 50–

100× faster than 5G’s peak of ~20 Gbps. Such capacity would allow transmission of ultra-

high resolution medical imaging (like full-body MRI scans or pathology slide digitizations) 

almost instantaneously between devices or to cloud AI systems. Real-time streaming of 3D 

video or holographic content for telemedicine and surgical training would also become 

feasible[25]. 

• Ultralow latency: One of the most crucial factors for medical applications is network latency 

(delay). 5G introduced ultra-reliable low-latency communication (URLLC) with ~1 

millisecond radio link latency, which has enabled near-real-time applications like remote 

robotics. 6G is expected to push latency down to the order of 0.1 ms or even the microsecond 

level. Essentially, 6G seeks “near-instantaneous” wireless communication. For healthcare, 

this could enable truly real-time feedback loops – for example, a surgeon’s command to a 

remote robotic scalpel and the tactile feedback from the surgical site could be communicated 

fast enough to feel almost synchronous. Similarly, critical alarms from patient monitors won’t 

suffer perceivable lag, and connected ambulance video feeds will have no significant delay, 

improving emergency response[26]. 

• Massive connectivity and coverage: 6G will expand the scale of device connectivity beyond 

5G’s limits. Whereas 5G can connect up to around one million devices per square kilometer 

(supporting the Internet of Things), 6G may connect an order of magnitude more – enabling 

tens of millions of sensors, wearables, and implants in the same area. This is vital for Internet 

of Medical Things (IoMT) ecosystems where a vast number of biosensors and smart devices 

continuously report patient data. 6G is also expected to integrate terrestrial cellular networks 

with satellite and aerial networks (high-altitude platforms, drones), providing global coverage 

including rural or remote regions that lack fiber infrastructure. Ubiquitous coverage ensures 

that healthcare data can be transmitted from virtually anywhere – whether from an ambulance 

in transit, a patient’s home, or a disaster site – to where it’s needed (hospital, cloud AI, 

etc.)[27]. 

• Enhanced reliability and QoS: Mission-critical healthcare applications require not just low 

latency but extremely high reliability (near 100% availability) and guaranteed Quality of 

Service (QoS). 6G is expected to improve on 5G’s reliability (which targets ~99.999% 

uptime) by using techniques like intelligent network slicing, AI-driven predictive routing, and 

redundant paths. For instance, networks will preemptively allocate resources to a telesurgery 

session to ensure stable connectivity throughout. Quality of Experience (QoE) optimization – 

focusing on the end-user’s perceived experience – will be central in 6G design for 

applications like remote VR consultations or haptic feedback systems[28]. 

• Terahertz spectrum and sensing: 6G will exploit higher-frequency bands in the sub-

terahertz (THz) and optical spectrum to achieve its high throughput goals. These frequencies 

(e.g. 0.1–1 THz) offer enormous bandwidth but have shorter range, necessitating dense 

deployment of micro cells and smart repeaters. Interestingly, signals at these frequencies can 

also be used for sensing the environment – effectively doubling as radar. In healthcare, this 
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could enable contactless monitoring such as imaging the inside of a body or detecting 

movements and vital signs using radio waves. For example, high-frequency 6G signals might 

be used to monitor respiration or even perform low-power MRI-like scanning without 

traditional machines (though this is speculative and subject to research in electromagnetic 

bio-sensing)[29]. 

• AI-native networking: Unlike previous generations, 6G is being conceived as an AI-native 

network. This means AI and machine learning will be embedded at various layers of the 

network for self-optimization and management. AI algorithms will dynamically allocate 

spectrum, optimize antenna beamforming, predict and mitigate congestion, and perform 

anomaly detection for security. In effect, 6G networks will be self-learning and adaptable. 

For healthcare, AI-driven network management ensures that critical medical applications 

always get priority and optimal network conditions. For instance, an AI algorithm in a 6G 

hospital network could sense an upcoming surge in data from an emergency event and 

automatically reserve bandwidth and computing resources for it. Section 2.4 will discuss how 

AI and 6G can symbiotically improve each other [30]. 

Table 1 highlights some key differences between 5G and 6G capabilities relevant to 

healthcare. Notably, 6G’s improvements in speed, latency, and device density will directly 

address current limitations of telemedicine and real-time analytics, while new features like 

integrated sensing and native AI support will open novel medical applications. 

Table 1: Comparison of 5G and 6G capabilities in context of healthcare requirements. 6G’s 

target specifications vastly exceed 5G across data rate, latency, connectivity, and intelligence 

– providing the foundation for responsive, data-intensive medical applications. 

Aspect 5G (Current State) 6G (Expected Advancement) 

Peak Data 

Rate 
Up to ~20 Gbps in ideal conditions

researchgate.net. Enables HD video 

streaming and basic telemedicine.  

On the order of Tbps (1000+ Gbps)

idtechex.com. Supports instant transmission 

of ultra-high-resolution imaging, holographic 

communication, and massive datasets.  

Latency 

(Air 

Interface) 

~1 ms (URLLC mode) in best 

casespubmed.ncbi.nlm.nih.gov. 

Low enough for some remote 

control tasks, but kinesthetic 

feedback still challenging.  

~0.1 ms or lower (sub-ms)techtarget.com. 

Essentially real-time responsiveness, enabling 

tactile internet and seamless robotic surgery 

with haptic feedback

pubmed.ncbi.nlm.nih.gov. 

Device 

Connectivity 
~10^6 devices per km² (mMTC). 

Supports large IoT deployments 

within a hospital. 

10–100× more devices (tens of millions per 

km²). Can connect ubiquitous IoMT sensors, 

wearables, implants across communities

pmc.ncbi.nlm.nih.gov. 

Reliability High (five-nines availability 

~99.999%). Still occasional drops 

or variability under heavy load. 

Ultra-reliable (potentially six-nines or more). 

AI-managed networks and redundancy for 

virtually no downtime for critical services

pmc.ncbi.nlm.nih.gov. 

https://www.researchgate.net/publication/382224487_Big_Data_Analytics_Model_Using_Artificial_Intelligence_AI_and_6G_Technologies_for_Healthcare#:~:text=Artificial%20Intelligence%20,data%20collection%2C%20data%20selection%20and
https://www.researchgate.net/publication/382224487_Big_Data_Analytics_Model_Using_Artificial_Intelligence_AI_and_6G_Technologies_for_Healthcare#:~:text=Artificial%20Intelligence%20,data%20collection%2C%20data%20selection%20and
https://www.researchgate.net/publication/382224487_Big_Data_Analytics_Model_Using_Artificial_Intelligence_AI_and_6G_Technologies_for_Healthcare#:~:text=Artificial%20Intelligence%20,data%20collection%2C%20data%20selection%20and
https://www.idtechex.com/en/research-article/6g-key-hardware-technologies-and-future-development-roadmap/32034#:~:text=reaching%20terabits%20per%20second%20,harvesting%2C%20advanced%20sensing%2C%20and%20more
https://www.idtechex.com/en/research-article/6g-key-hardware-technologies-and-future-development-roadmap/32034#:~:text=reaching%20terabits%20per%20second%20,harvesting%2C%20advanced%20sensing%2C%20and%20more
https://www.idtechex.com/en/research-article/6g-key-hardware-technologies-and-future-development-roadmap/32034#:~:text=reaching%20terabits%20per%20second%20,harvesting%2C%20advanced%20sensing%2C%20and%20more
https://www.idtechex.com/en/research-article/6g-key-hardware-technologies-and-future-development-roadmap/32034#:~:text=reaching%20terabits%20per%20second%20,harvesting%2C%20advanced%20sensing%2C%20and%20more
https://pubmed.ncbi.nlm.nih.gov/39549181/#:~:text=This%20paper%20explores%20the%20role,the%20differing%20latency%20demands%20of
https://pubmed.ncbi.nlm.nih.gov/39549181/#:~:text=This%20paper%20explores%20the%20role,the%20differing%20latency%20demands%20of
https://pubmed.ncbi.nlm.nih.gov/39549181/#:~:text=This%20paper%20explores%20the%20role,the%20differing%20latency%20demands%20of
https://pubmed.ncbi.nlm.nih.gov/39549181/#:~:text=This%20paper%20explores%20the%20role,the%20differing%20latency%20demands%20of
https://pubmed.ncbi.nlm.nih.gov/39549181/#:~:text=This%20paper%20explores%20the%20role,the%20differing%20latency%20demands%20of
https://pmc.ncbi.nlm.nih.gov/articles/PMC10975185/#:~:text=cutting,smart%20cities%20and%20autonomous%20systems
https://pmc.ncbi.nlm.nih.gov/articles/PMC10975185/#:~:text=cutting,smart%20cities%20and%20autonomous%20systems
https://pmc.ncbi.nlm.nih.gov/articles/PMC10975185/#:~:text=cutting,smart%20cities%20and%20autonomous%20systems
https://pmc.ncbi.nlm.nih.gov/articles/PMC10975185/#:~:text=cutting,smart%20cities%20and%20autonomous%20systems
https://pmc.ncbi.nlm.nih.gov/articles/PMC10975185/#:~:text=AI,80
https://pmc.ncbi.nlm.nih.gov/articles/PMC10975185/#:~:text=AI,80
https://pmc.ncbi.nlm.nih.gov/articles/PMC10975185/#:~:text=AI,80
https://pmc.ncbi.nlm.nih.gov/articles/PMC10975185/#:~:text=AI,80
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Spectrum 

Usage 

Sub-6 GHz and mmWave bands 

(up to ~100 GHz). Limited 

penetration at higher bands; mostly 

communication-focused. 

Extends into sub-THz frequencies

idtechex.com and visible light. Requires dense 

cells, but also enables integrated sensing 

(radar-like health monitoring) and extreme 

bandwidth. 

Network 

Intelligence 

ML used for optimizing some 

network functions (e.g. scheduling) 

but not pervasive. Separate 

communication and computing 

layers. 

AI-native design: network continuously self-

optimizes via AIpmc.ncbi.nlm.nih.gov. In-

network computation (edge AI) is standard, 

blurring line between communication and 

processingpmc.ncbi.nlm.nih.gov

pmc.ncbi.nlm.nih.gov. 

Support for 

AR/VR & 

Haptics 

Limited by bandwidth/latency; 5G 

can support AR/VR with ~20 ms 

latency, some remote control with 

careful QoS. 

Designed for immersive technologies: 6G will 

handle multi-sensory (visual, audio, touch) 

data with imperceptible delaymdpi.com. True 

holographic telepresence and remote tactile 

feedback become possible.  

 

From Table 1, it is evident that 6G networks are being tailored to meet the stringent demands 

of healthcare and other mission-critical domains. For instance, telesurgery is one of the often-

cited use cases pushing the limits of latency and reliability. Under 5G URLLC, surgeons can 

perform remote operations with high-definition video and basic haptic feedback, but any 

network hiccup or 1–2 ms jitter could affect delicate maneuvers. With 6G, the goal is to 

render the network virtually invisible to the surgeon – the communication link should feel as 

if it isn’t there at all, in terms of delay. Moreover, 6G’s improved reliability and AI-driven 

predictive QoS can help guarantee a steady connection even in less controlled environments. 

This illustrates how the leap from 5G to 6G is not just incremental but transformative, 

particularly when coupled with AI to fully exploit these network gains [31][32][33][34]. 

2.3 Enabling Technologies: IoT, Edge Computing, and Big Data in Healthcare 

The fusion of AI and 6G in medicine does not happen in isolation – it is facilitated by a 

broader ecosystem of enabling technologies. Chief among these are the Internet of Things 

(IoT), including medical connected devices (IoMT), edge and cloud computing 

infrastructures, and big data analytics pipelines. These form the scaffolding on which AI 

algorithms run and through which 6G transmits data. We briefly outline these components 

and their roles: 

• Internet of Medical Things (IoMT): This refers to the network of smart devices and sensors 

in healthcare that collect patient data and often actuate responses. Examples include wearable 

vital sign monitors, implantable sensors (like glucose monitors, pacemakers), smart hospital 

beds, infusion pumps, imaging devices, and even environmental sensors tracking room 

conditions. IoMT devices generate continuous streams of data – heart rate, blood pressure, 

blood sugar, oxygen levels, activity metrics, etc. – forming the “input” to many AI-driven 

healthcare services. 6G can significantly enhance IoMT by providing massive machine-type 

communication (mMTC) capacity and uniform connectivity. In a 6G-enabled hospital, tens of 

https://www.idtechex.com/en/research-article/6g-key-hardware-technologies-and-future-development-roadmap/32034#:~:text=reaching%20terabits%20per%20second%20,harvesting%2C%20advanced%20sensing%2C%20and%20more
https://www.idtechex.com/en/research-article/6g-key-hardware-technologies-and-future-development-roadmap/32034#:~:text=reaching%20terabits%20per%20second%20,harvesting%2C%20advanced%20sensing%2C%20and%20more
https://www.idtechex.com/en/research-article/6g-key-hardware-technologies-and-future-development-roadmap/32034#:~:text=reaching%20terabits%20per%20second%20,harvesting%2C%20advanced%20sensing%2C%20and%20more
https://www.idtechex.com/en/research-article/6g-key-hardware-technologies-and-future-development-roadmap/32034#:~:text=reaching%20terabits%20per%20second%20,harvesting%2C%20advanced%20sensing%2C%20and%20more
https://www.idtechex.com/en/research-article/6g-key-hardware-technologies-and-future-development-roadmap/32034#:~:text=reaching%20terabits%20per%20second%20,harvesting%2C%20advanced%20sensing%2C%20and%20more
https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
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thousands of sensors and devices can reliably connect at once, with low power requirements 

and minimal interference. This means a fully instrumented smart hospital where data from 

every device, patient, and system is fed in real time to analytics platforms. For instance, 

wearable monitors on at-risk patients could continuously stream data via 6G to an AI system 

that detects early signs of deterioration and alerts clinicians immediately. IoMT combined 

with 6G also extends care beyond hospital walls – home health devices and ambulance 

equipment become part of the always-connected fabric. However, this requires careful 

architecture to handle the deluge of data and maintain security [35]. 

• Edge and Cloud Computing: The sheer volume and velocity of healthcare data in an AI+6G 

scenario necessitate powerful computing resources to process information near real-time. 

Cloud computing provides centralized platforms (hospital servers or cloud data centers) 

where heavy AI models can run on large datasets. 6G’s high bandwidth makes it feasible to 

offload data to cloud AI engines quickly. However, for time-critical tasks, relying solely on 

distant cloud servers might introduce too much latency. This is where edge computing comes 

in. Edge computing refers to processing data closer to where it is generated – e.g., on local 

servers in the hospital, or even on-device computation in IoT nodes or 6G base stations. By 

deploying AI models at the edge (on a 6G access point or a nearby edge cloudlet), one can 

achieve millisecond-level inference on incoming data without having to send everything to a 

centralized cloud In a 6G smart hospital, an architecture might include distributed edge AI 

units: for example, an AI module right in an MRI machine processes images as they are 

captured, or an edge server on each hospital floor aggregates and analyzes data from that 

ward’s sensors for quick insights. Edge AI reduces backhaul traffic and alleviates the load on 

core networks, which is important when hundreds of devices are streaming data 

simultaneously. It also enhances privacy by keeping sensitive data locally when possible 

(only transmitting synthesized results). Therefore, a hybrid cloud-edge approach is expected. 

Realizing this, 6G standards are likely to support Mobile Edge Computing (MEC) as a native 

feature, and AI workloads will be orchestrated across cloud and edge depending on latency 

and bandwidth needs. For example, initial data filtering and anomaly detection might occur at 

the edge, triggering a more intensive analysis or specialist consult via the cloud if needed. 

• Big Data Analytics and Integration: Healthcare data comes in diverse forms – structured 

records, lab results, medical images, sensor waveforms, genomics sequences, etc. Combining 

these into a coherent picture of patient health is a big data challenge. Modern big data 

platforms (using technologies like Hadoop/Spark or specialized medical data lakes) enable 

storing and processing multi-modal health data. AI thrives on such integrated datasets, 

finding patterns across modalities (e.g., correlating genetic markers with imaging findings 

and clinical history). With 6G connectivity, data from various sources (personal devices, 

local clinics, large hospitals) can be aggregated more easily into big data repositories for 

population-level analyses and training robust AI models. A key aspect here is interoperability 

– ensuring different devices and systems speak compatible data formats and protocols. Open 

standards (HL7/FHIR for health data exchange, DICOM for imaging, etc.) combined with 

6G’s reliable transfer can facilitate the creation of unified patient records accessible by AI 

anywhere. Big data analytics also feed into predictive modeling: by analyzing trends in 
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massive datasets, healthcare systems can predict disease outbreaks, allocate resources, and 

personalize patient care plans. In a 6G scenario, these analytics could be continuous and in 

real-time. For example, a national health service might continuously ingest anonymized data 

from thousands of 6G-connected clinics to monitor the emergence of epidemiological 

patterns, with AI flagging anomalies instantly (as opposed to waiting for manual reporting) 

[36][37][38]. 

In essence, IoMT provides the data sources, 6G provides the data pipeline, edge/cloud 

computing provides the processing power, and AI provides the analytic intelligence. These 

components working in concert can shorten the loop from data to diagnosis dramatically. A 

conceptual architecture for an AI-driven smart healthcare system might involve multiple 

layers – from sensing devices up through network connectivity, data management, analytics, 

application services, and an integration layer that ties it all together. Such an eight-layer 

infrastructure approach is depicted in Figure 2. It spans from the physical sensing layer 

(where medical data is generated), through connectivity, processing, storage, application 

logic, security/privacy measures, up to a business layer dealing with user interactions and 

business logic, all unified by an integration layer. This layered model ensures that as data 

travels from a patient’s body (through sensors) to AI algorithms and finally to a doctor’s 

decision support interface, each stage is optimized and interoperable [39][40]. 

 

Figure 2: Eight-layer infrastructure approach for 6G-enabled smart healthcare (adapted from 

an IoT architecture). The layers include: (1) Sensing layer – wearable and embedded medical 

sensors that collect health data; (2) Connectivity layer – 5G/6G networks providing high-

speed, low-latency data transfer; (3) Data processing and analytics layer – edge or cloud 

computing resources running AI algorithms on the collected data; (4) Data storage and 

management layer – databases or data lakes that securely store patient data and health 

records; (5) Application layer – healthcare applications and services (e.g., telemedicine 

platforms, clinical decision support tools) that utilize the analytics; (6) Security and privacy 

layer – mechanisms like encryption, authentication, and blockchain to protect data integrity 

and confidentiality; (7) Business layer – the top layer representing healthcare management 

processes, billing, and policy; (8) Integration layer – a horizontal layer ensuring all other 

layers interoperate seamlessly. Such an architecture highlights that successful AI+6G 

healthcare systems require not only advanced algorithms and networks, but also careful 

system design across multiple layers. 
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Using these enabling technologies, researchers have begun implementing prototype systems 

that embody the AI+6G vision. For instance, Ananthakrishnan, et. al. [14] developed a 6G-

based healthcare IoT framework focused on remote patient monitoring, demonstrating 

continuous collection of a patient’s vital signs and transmission to an AI model that predicts 

health events . In another work, Khan et al. [57] proposed a big data analytics model 

combining AI and 6G for real-time patient monitoring and diagnosis; their system processed 

large volumes of sensor data with high reliability and significantly reduced latency compared 

to 5G-based models. These studies show that even at this nascent stage, integrating 6G 

networking with AI algorithms can markedly improve healthcare data processing 

performance. Going forward, as 6G standards solidify, we can expect to see more pilot 

projects – e.g., 6G-connected ambulances streaming data to ER AI systems, or smart hospital 

wards with fully connected equipment orchestrated by an AI “brain” at the edge [41][42][43]. 

2.4 AI and 6G Synergy in Healthcare: A Framework 

Bringing together the above threads, we describe a conceptual framework of AI-6G synergy 

in healthcare, encapsulating how data flows from collection to diagnosis and action. In this 

framework, depicted in Figure 3, there are five primary stages: data generation, data 

transmission, data processing (AI analytics), feedback/diagnosis, and forecasting or decision 

support. Each stage is enabled or enhanced by 6G connectivity and AI algorithms working 

hand-in-hand [44]. 

 

Figure 3: Example of an integrated AI and 6G healthcare pipeline (self-explainable AI 

architecture. Medical data (here, brain MRI images) are collected and sent over a 6G network 

to a fog computing aggregator and then to a cloud/MEC server running a deep learning 

model. The AI model (with feature selection optimization) classifies the images, and an 

explainable AI module provides the clinician with both the diagnostic result and an 

explanation. The five numbered steps illustrate the AI lifecycle: (1) Training of the AI model 

(e.g., on historical medical images) yielding an explainable model; (2) Data aggregation from 

distributed sources via 6G; (3) AI processing and obtaining results (e.g., a diagnosis); (4) 

Testing and validation of the AI output; (5) Delivery of the diagnosis along with an 

explanation to the physician for decision-making. Such a pipeline relies on 6G’s connectivity 

to gather data and disseminate results swiftly, and on AI (including XAI techniques) to turn 

data into trustworthy clinical insights. 
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In Figure 3, which might represent an AI system analyzing radiology images in a tele-

diagnosis scenario, medical images are first captured (e.g., an MRI scan of a patient’s brain). 

Using the high-bandwidth 6G network, these large images are transmitted almost instantly to 

an edge or cloud server (step 2). There, a deep learning model (previously trained on many 

images – step 1) processes the new scan and classifies it (step 3), perhaps detecting a 

neurological condition. Importantly, the AI is designed as explainable, meaning it also 

provides a human-interpretable justification (e.g., highlighting regions of the MRI that were 

indicative of the diagnosis). The results and explanations are sent back to the clinician’s 

interface (steps 4 and 5) via the network. The clinician sees not just the AI’s diagnosis (for 

example, “tumor detected: likely glioma”) but also an explanation (such as a heatmap on the 

MRI showing the tumor region and a textual rationale). This builds trust and allows the 

clinician to validate the AI’s suggestion. Finally, the clinician can use this insight to confirm 

a diagnosis and plan treatment. In a feedback loop, the outcomes (e.g., surgical success, 

patient recovery) can be fed back as data to continually improve the AI model over time 

[45][46]. 

This pipeline underscores how 6G and AI complement each other. 6G provides the real-time 

data accessibility – without it, the AI’s analysis might only occur hours later when images are 

manually uploaded. AI provides the intelligence to interpret the data – without it, the high-

speed data transfer alone would not yield insights. Together, they enable a scenario where a 

patient can get an accurate diagnosis minutes after an imaging scan, even if the radiologist 

specialist is hundreds of kilometers away, because the AI model (accessible via 6G) can do 

the preliminary read and alert both the local physician and remote specialist immediately 

[47]. 

3. Applications of AI and 6G in Modern Medicine 

The marriage of AI and 6G networking unlocks a multitude of compelling applications in 

healthcare. In this section, we survey several major domains of medical practice and describe 

how AI algorithms, empowered by 6G connectivity, can enhance or even redefine these 

domains. Table 2 provides an overview of key application areas – including telemedicine, 

remote surgery, wearable health monitoring, medical imaging diagnostics, and smart 

hospitals – summarizing the role of AI and the role of 6G in each. We then delve into each 

area in detail, explaining current developments and future possibilities. These applications are 

generalized across healthcare; while we may use examples from specific fields (like 

cardiology or radiology), the underlying concepts are broadly applicable [48][49][50]. 
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Table 2: Major application areas enabled by AI + 6G in healthcares, illustrating AI’s role in 

data analysis and 6G’s role in communication 

Application 

Area 
AI’s Role (Data to Insight) 6G’s Role (Connectivity) 

Telemedicine 

& Virtual 

Care 

AI-driven triage bots evaluate patient 

symptoms; video analytics assess 

patient condition; language AI 

translates or summarizes clinical 

conversations. Provides decision 

support to remote doctors (e.g., 

suggesting possible diagnoses). 

6G enables high-definition, ultra-

low-latency video calls and even 

holographic doctor-patient 

interactionsmdpi.com. Guarantees 

real-time transmission of vital signs 

and sensor data from patient’s home 

to clinic. Eliminates geographic 

barriers with seamless connectivity.  

Remote 

Surgery & 

Robotics 

AI controls robotic surgical instruments 

(e.g., motion scaling, tremor reduction); 

computer vision assists by identifying 

anatomical structures; predictive 

algorithms anticipate surgeon’s needs. 

AI can also monitor for safety (pausing 

if anomaly). 

6G provides the needed sub-ms 

latency and reliability for 

transmitting surgeon’s controls and 

receiving haptic feedback

pubmed.ncbi.nlm.nih.gov. Ensures 

synchronized multi-modal streams 

(video, tactile, audio) with no 

dropoutpubmed.ncbi.nlm.nih.gov. 

Allows an expert surgeon to operate 

on a distant patient with near-direct-

touch experience. 

Wearable and 

Implantable 

Monitoring 

AI algorithms on wearable devices or 

edge servers analyze biosignals (ECG, 

glucose, oxygen) in real time to detect 

anomalies (arrhythmias, hypoglycemia, 

etc.). Personalized baselines and ML 

models improve accuracy of alerts and 

reduce false alarms. 

6G connects a massive number of 

wearables (WBAN/IoMT) 

simultaneously with low power. 

Streams data continuously to 

caregivers or cloud, even in mobility 

(ambulatory, rural). Low latency 

allows immediate alerts to reach 

doctors or the patient’s phone. 

Pervasive coverage ensures no data 

“dead zones” for critical monitors. 

Medical 

Imaging 

Diagnostics 

AI (especially deep learning) rapidly 

analyzes imaging data – X-rays, CT, 

MRI, ultrasound – to identify 

pathologies (tumors, fractures, lesions). 

Can provide quantification and 

preliminary reports. Explainable AI 

highlights key findings for radiologist 

reviewpmc.ncbi.nlm.nih.gov

pmc.ncbi.nlm.nih.gov. 

6G enables instant uploading of 

large image files to cloud AI or 

specialistspmc.ncbi.nlm.nih.gov

pmc.ncbi.nlm.nih.gov. Enables 

teleradiology with virtually no wait. 

Multiple imaging modalities (e.g., 

live ultrasound video + CT) can be 

streamed concurrently for AI fusion 

analysis. Facilitates remote peer 

review in real time during scans. 

https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
https://www.mdpi.com/1424-8220/23/13/5882#:~:text=providing%20high%20QoS%20and%20QoE,autonomous%20vehicles%20such%20as%20intelligent
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Smart 

Hospitals & 

Automation 

AI coordinates hospital operations: 

predictive analytics for patient 

admission and discharge, optimization 

of staffing and bed assignment, and 

smart ICU monitoring that flags patient 

deterioration. Robotics and AI 

automate routine tasks (e.g., pharmacy 

dispensing, cleaning) under 

supervision. 

6G interconnects all hospital 

devices, staff wearables, and 

infrastructure under one network

pmc.ncbi.nlm.nih.gov

pmc.ncbi.nlm.nih.gov. High 

reliability ensures medical devices 

(infusion pumps, ventilators) can be 

tele-controlled with fail-safe 

performance. In emergency 

situations, 6G prioritizes critical data 

traffic (alarms, code blue signals) 

instantly to relevant teams. 

 

Each of these areas leverages the core strengths of AI and 6G: AI provides the intelligence to 

interpret data and make recommendations, while 6G provides the nervous system that carries 

data and commands swiftly and securely among devices and stakeholders. The following 

subsections will illustrate these points with more depth and examples [51][52]. 

 

Figure 4: High-QoE (Quality of Experience) demanding healthcare applications that heavily 

depend on 6G’s capabilities【64†】. These include: (clockwise from top) Remote health 

monitoring (continuous vital sign tracking via wearables), AR/VR Hologram (augmented 

reality and holographic displays for telemedicine training or remote consultation), 

Telesurgery (robot-assisted surgery performed across distances), Wireless Body Area 

Networks (WBAN) (collections of implanted or worn sensors communicating patient data), 

Five-sense communication (the “tactile internet” enabling transmission of touch, taste, or 

smell for a fully immersive telehealth experience), Intelligent Ambulance Service 

(ambulances functioning as mobile 6G-connected clinics with AI support en route), and 

Wireless Brain-Computer Interfaces (BCI) (for neuroprosthetics or assistive devices). All 

these scenarios require the ultra-low latency, high bandwidth, and reliability of 6G to deliver 

a satisfactory user experience, and most involve AI to analyze data or control devices. 
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Many of the applications shown in Figure 4 are under active exploration. For example, 

wireless BCIs (Brain-Computer Interfaces) could help paralyzed patients control prosthetic 

limbs or computer cursors directly with their thoughts. Current BCI experiments are often 

wired or on Wi-Fi; 6G could provide the stable, high-throughput link needed for transmitting 

neural signals to AI decoders and sending commands back to assistive devices with minimal 

delay. Similarly, an intelligent ambulance connected via 6G can send live patient data (ECG, 

ultrasound scans, video of the patient) to the hospital while en route, allowing emergency 

physicians and AI systems to prepare treatment before the patient arrives – effectively the 

care starts on the move. AI algorithms in such a scenario might interpret the ambulance data 

(e.g., detecting a heart attack from the ECG) and alert the hospital to assemble a cardiac team, 

saving precious minutes. Each icon in Figure 4 represents a class of use cases where human 

senses or critical judgments are extended across distance via technology, and achieving a 

high quality of experience (meaning it feels natural, reliable, and effective) is only possible 

when AI and communication networks work in harmony [53][54]. 

Below, we discuss five broad categories in detail: telemedicine, remote surgery, wearable 

monitoring, medical imaging, and smart hospitals. These categories cover the majority of 

scenarios depicted in Figure 4 and Table 2, and they often overlap – for instance, an 

intelligent ambulance is a mix of telemedicine and IoT monitoring in a mobile context. We 

will highlight the state-of-the-art and anticipated developments for each, citing recent 

research where applicable. 

3.1 Telemedicine and Virtual Healthcare 

Telemedicine involves delivering clinical health care from a distance using 

telecommunications technology. This ranges from video consultation between doctor and 

patient, to remote diagnosis services, and even remote therapy or rehabilitation sessions. 

Telemedicine saw a rapid expansion with the advent of high-speed internet and was further 

accelerated by the COVID-19 pandemic, primarily using broadband and 4G/5G networks. AI 

and 6G together have the potential to elevate telemedicine to a new level of quality, making 

virtual consultations as rich and informative as in-person visits, if not more so [55]. 

On the AI side, several capabilities enhance telemedicine: 

• Symptom triage and chatbots: AI-driven chatbots can converse with patients prior to a live 

consultation, collecting medical history and symptoms. They use natural language processing 

to understand patient complaints and can even perform preliminary triage (assigning a 

priority or suggesting a likely cause). These bots free up clinician time and ensure that during 

the actual video visit, the doctor has structured information available. Some primary care 

systems already use AI chatbots for initial patient intake. 

• Computer vision in video calls: AI can analyze the live video feed of a patient during a 

teleconsultation. For instance, it might track facial expressions for pain, analyze voice 

patterns for stress or respiratory issues, or observe movements and skin color for clinical 

signs. Research prototypes have shown that AI can estimate vital signs like heart rate or 

breathing rate just from a camera (via subtle head movements or color changes in skin). In 
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mental health tele-visits, AI might help monitor a patient’s mood or detect signs of 

depression. These insights, provided in real-time to the clinician, can augment the quality of 

remote examination. 

• Translation and summarization: Language barriers in telemedicine can be mitigated by AI 

translation services which, with 6G’s low latency, could provide near real-time interpretation 

between patient and provider. AI can also transcribe and summarize telemedicine visits, 

automatically generating an encounter note with key points and follow-up plans, allowing 

clinicians to focus more on the patient than on notetaking. 

• Remote diagnostic support: AI algorithms can assist doctors by analyzing any diagnostic 

data gathered remotely. For example, if a patient uses a digital stethoscope or otoscope at 

home (some telehealth kits include these), AI can analyze the heart/lung sounds or ear images 

and flag abnormalities for the physician during the live session. For dermatology 

teleconsultations, AI can examine uploaded skin lesion photos for features of malignancy and 

give the dermatologist a second opinion. 

The role of 6G in telemedicine is to ensure all these rich streams of data (video, audio, sensor 

feeds) flow without interruption or degradation, thus preserving the clinical usefulness of the 

encounter. With 5G, high-quality video is possible, but 6G would allow multi-stream ultra-

HD feeds – for instance, simultaneous video from two perspectives (perhaps one normal view 

and one infra-red view of the patient), or integration of AR for the doctor (the doctor could 

wear AR glasses where patient data and AI annotations are overlaid on the live video). 

Moreover, 6G’s capacity means that a telemedicine session can easily incorporate additional 

participants and data sources: a specialist from another hospital can join via holographic 

telepresence, or a live feed from a local diagnostic machine (like a portable ultrasound 

handled by a nurse with the patient) can be streamed in full resolution to the remote 

physician. The negligible latency of 6G will make conversations more natural (no lag or 

talking over each other) and even enable physical examination at a distance using haptic 

devices. For example, future telemedicine setups might include haptic gloves or suits for the 

doctor and patient. A doctor could manipulate a device that the patient holds, feeling 

resistance as if touching the patient, allowing remote palpation of the abdomen or checking 

joint mobility. This concept of the tactile internet requires <10 ms latency end-to-end, which 

6G can provide [56][58]. 

3.2 Robotic Surgery and Remote Intervention 

One of the most dramatic applications of AI and advanced networking in medicine is remote 

robotic surgery, or telesurgery. Here, a surgeon operates robotic instruments (such as the Da 

Vinci surgical robot) from a location that can be far away from the patient, using a high-

fidelity communication link. The concept has existed experimentally for over two decades 

(notably the 2001 Lindbergh operation where surgeons in New York removed a gallbladder 

from a patient in France via an undersea fiber link). However, widespread adoption has been 

limited by network constraints; even slight delays or instability in control signals can pose 

serious risks when manipulating surgical tools inside a patient’s body. 5G began to tackle this 

with URLLC, and in fact, there have been demonstrations of near-real-time telesurgery over 
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5G for short distances. Looking ahead, 6G is seen as the key to fully unlocking remote 

surgery on a broader scale [59][60]. 

As detailed in a recent review by Dohler et al. [12], 5G’s latency and bandwidth allow 

transmission of kinesthetic, audio, and visual data with minimal delay, but 6G will further 

minimize latency and incorporate AI to enhance stability. In a telesurgery setup, multiple data 

streams are critical: the surgeon needs a stereoscopic high-resolution video feed from the 

surgical site; they may also have additional camera angles or even microscopic views. They 

require haptic feedback devices that relay the sense of touch or resistance as the surgical 

robot encounters tissues. They issue commands through hand controllers or other interfaces 

that must be conveyed instantly to the robot’s actuators. Additionally, there may be an 

assistant or AI that provides on-screen guidance (e.g., highlighting blood vessels or anatomy) 

[61]. 

AI’s role in robotic surgery is multi-fold: 

• Enhanced control and precision: AI algorithms can filter and interpret the surgeon’s input. 

For example, AI can perform motion scaling (translating a large hand movement into a tiny 

instrument movement) and tremor reduction, effectively smoothing out any unintended jitters 

in the surgeon’s control. This improves precision. AI can also enforce virtual safety barriers – 

e.g., if the surgeon’s tool is about to stray toward a critical structure (like a nerve), the AI can 

warn or even constrain the motion. These kinds of intelligent assistants increase safety in 

both local and remote robotic surgery. 

• Computer vision assistance: Inside the patient, an AI vision system can analyze the feed 

from the endoscopic camera. It can identify organs, blood vessels, or tumors and overlay 

boundaries or labels for the surgeon (augmented reality in the surgeon’s console view). 

During an operation, AI could detect subtle cues of complications – like excessive bleeding, 

or tissue anomalies – faster than the human eye and alert the team. It essentially serves as a 

second set of eyes that never tires. 

• Automation of sub-tasks: Fully autonomous surgical robots are still experimental, but AI 

can already automate certain subtasks. For instance, tying a suture knot or cauterizing a 

routine set of bleeding vessels could be offloaded to the AI, under supervision, to reduce the 

surgeon’s cognitive load. In remote settings, where latency even in 6G might be low but non-

zero, having the robot handle micro-reflexes (like instantaneously stopping if it detects 

unexpected force) adds a safety layer. 

• Predictive analytics: AI can predict what the surgeon might need next. Based on procedure 

progress, it might ready certain tools or adjust camera angles proactively. Over many 

surgeries, AI can learn patterns – e.g., that at a certain step of a cardiac surgery, heart rate 

tends to fluctuate, so it primes an alert or medication suggestion. Additionally, AI can 

integrate pre-operative data (imaging, planning) with intra-operative data to guide the 

surgery, known as surgical navigation. 

All these AI contributions require a robust data flow. For example, sending real-time video to 

an AI server for analysis and then sending annotations back to the surgeon’s display has to 
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happen with negligible delay to be useful during surgery. A 6G network can facilitate this 

even if the AI processing is happening remotely (though likely edge computing would be 

used to keep it nearby) [62]. 

6G also allows remote surgery beyond local networks. With its satellite integration, a surgeon 

in one continent could operate on a patient in another continent, which could democratize 

access to specialist surgeons worldwide. The reliability improvements of 6G (and possibly 

backup via fiber or other links) are crucial because any network drop mid-procedure is 

dangerous. In practice, a combination of 6G wireless and fiber may be used for redundancy in 

long-distance telesurgery, with AI monitoring network quality and able to take emergency 

safe actions (like moving instruments out and pausing) if a disconnection is imminent 

[63][64]. 

3.3 Wearable and Remote Patient Monitoring 

One of the most immediate and tangible impacts of AI and advanced connectivity in 

healthcare is seen in remote patient monitoring. This involves continuously tracking health 

metrics of individuals outside the hospital (often at home or on the go) using wearable or 

implantable sensors – for example, heart rhythm monitors, glucose sensors, blood pressure 

cuffs, activity trackers, or even smart contact lenses that measure intraocular pressure. By 

keeping a digital finger on the patient’s pulse (sometimes literally), issues can be detected 

early and chronic conditions can be managed proactively. However, continuous monitoring 

generates continuous data, which can overwhelm healthcare providers unless there is 

intelligent analysis in place. Here, AI comes to the forefront, analyzing data trends and 

detecting anomalies, while 6G connectivity ensures the data flows uninterrupted to where it 

can be acted upon [65][66]. 

AI in remote monitoring typically functions in a few ways: 

• Anomaly detection: Machine learning models can learn a patient’s normal range and 

patterns of readings. When the data deviates significantly – e.g., a sudden drop in oxygen 

saturation or a spike in blood pressure – the AI can flag it. These models can be rule-based (if 

heart rate > X for Y minutes, trigger alert) or more complex, using statistical learning or 

neural networks that recognize subtle precursors to events (like the onset of atrial fibrillation 

or heart failure exacerbation). Importantly, AI can reduce false alarms by considering 

multiple signals together. For instance, an isolated high heart rate might be fine if the patient 

is exercising, but if high heart rate comes with low activity and low blood pressure, that’s 

more concerning. AI can learn such multivariate correlations, which a simple threshold alarm 

might miss. 

• Trend prediction: With enough historical data, AI can forecast future health trends. For 

example, in diabetic patients, AI algorithms can predict hyperglycemia or hypoglycemia 

hours in advance based on current glucose sensor trajectories and context (meals, activity). 

This allows preventative actions (like adjusting insulin). Similarly, in heart failure patients, 

small daily changes in weight, blood pressure, and impedance (measured by smart scales and 

wearables) can indicate fluid buildup; AI models have been shown to predict heart failure 
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hospitalizations days before acute symptoms, enabling preemptive diuretic therapy and 

avoiding hospital visits. 

• Personalization: AI can tailor thresholds and responses to each individual. One person’s 

“normal” blood pressure might be another’s hypertension crisis. By learning each patient’s 

baseline, AI avoids one-size-fits-all alerts. It can also adjust to medication changes or 

progression of disease, continuously recalibrating what is expected. 

• Patient feedback and self-management: On the patient side, AI-driven apps can give 

immediate feedback or coaching. For example, a smartwatch AI might detect an irregular 

heartbeat (possible arrhythmia) and prompt the patient to take an ECG reading using the 

watch’s sensors (some consumer devices now have this ability). If the AI finds signs of atrial 

fibrillation, it can advise the patient to rest and notify their doctor. Or for a patient with 

asthma, an AI app might warn when their breathing pattern is deteriorating and suggest using 

a rescue inhaler or doing breathing exercises. 

Now, for all this to work seamlessly, connectivity is key. Many wearables are small and have 

limited processing – they rely on sending data to a phone or hub, and from there to cloud 

servers. 6G can greatly improve the reliability and coverage of this data transfer. For 

instance, a person could be hiking in a remote area and their wearable health devices would 

still be connected through 6G’s extensive coverage (perhaps via satellite link or high-altitude 

platform if no ground towers are around). If they have an emergency (say a cardiac event), 

the data and SOS signal get out immediately and help can be dispatched with precise location 

info. 

The high capacity of 6G also means multiple sensors can operate in parallel without issues. In 

a single patient, you might have a smart watch, a glucose monitor, a blood pressure patch, 

and a smart medication pillbox all transmitting data. Multiply this by hundreds of patients in 

a community and you have a massive IoMT scenario. 5G can handle a lot of devices, but 

6G’s mMTC will handle an order more, ensuring scalability. Furthermore, 6G’s low latency 

isn’t as critical for most monitoring (a 1 second delay in a blood pressure reading is not life-

or-death), but in acute situations like wearable defibrillators or alarms, every second counts. 

And if a closed-loop system is in place (like an insulin pump that automatically adjusts based 

on sensor and AI input), you want the adjustments to be as real-time as possible to mimic a 

healthy body; low latency helps tighten those loops [67][68][69]. 

Chataut et al. [5] highlight that the convergence of AI with 6G will truly revolutionize health 

monitoring by enabling personalized, proactive, and efficient care, with seamless data 

analysis and timely interventions. They mention how predictive analytics on health data will 

allow forecasting health trends and providing recommendations tailored to individuals. An 

example from their discussion: combining wearable data with AI could not only tell if a 

person’s current status is abnormal, but also predict events like a fall or an asthma attack 

before they happen, allowing preventive measures (this could involve something like 

reminding the patient to take medication or alerting a nurse to check on them). 
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One important benefit of AI+6G monitoring is for aging populations and patients with 

chronic illnesses. These individuals can stay in their homes longer rather than hospitals or 

care facilities, knowing that any serious change in their condition will be quickly detected 

and addressed. This not only improves their quality of life but also reduces healthcare costs 

(fewer unnecessary hospital admissions). During pandemics or infectious disease outbreaks, 

remote monitoring with AI can keep vulnerable patients safe at home while still under 

medical supervision[70]. 

Of course, for full adoption, challenges like data privacy (who can access the streaming 

health data?) and alert fatigue (ensuring the system isn’t crying wolf too often) need to be 

solved – these are addressed in Section 4. But technically, with 6G providing the connectivity 

backbone and AI providing the analytical brain, remote patient monitoring could shift 

healthcare from reactive to proactive. Instead of waiting for a patient to feel so unwell that 

they come to the clinic, the system “feels” for them continuously and catches issues at the 

earliest time, sometimes before the patient perceives symptoms [71]. 

In fact, some hospitals are setting up “mission control” centers that use AI analytics on 

streaming data from both inpatients and recently discharged patients. One can envision in the 

6G era a single hub monitoring thousands of patients at home, each with an AI profile, where 

a few nurses oversee the AI alerts. A study in BMJ (2023) on AI monitoring emphasizes the 

importance of having frameworks to oversee these models so that they remain accurate over 

time. Continuous performance monitoring of the AI itself will be needed – essentially AI 

watching AI – to ensure the system’s reliability, but that is manageable with proper design 

[72]. 

3.4 Medical Imaging and Diagnostics 

Medical imaging is a cornerstone of diagnosis – modalities like X-ray, CT, MRI, and 

ultrasound allow non-invasive visualization of the body’s internal structures. AI has made 

tremendous advances in imaging analysis, often achieving expert-level performance in 

detecting pathologies such as cancers, hemorrhages, or fractures on images. Meanwhile, 

high-speed networks allow images to be shared and consulted remotely (teleradiology). The 

combination of AI with 6G networking will significantly streamline imaging workflows and 

enhance diagnostic reach and accuracy [73][74]. 

AI in imaging diagnostics includes: 

• Image interpretation: AI (especially deep learning CNNs) can identify abnormalities in 

images (like lung nodules on chest CT, or polyps in colonoscopy videos) and even 

characterize them (estimating malignancy probability, measuring sizes). These algorithms 

assist radiologists by acting as a second reader, catching things a human might overlook, or 

triaging cases (flagging critical findings to be read first). In some contexts (e.g., screening 

mammography or retinal screening), AI might eventually handle the bulk of primary reading 

with human confirmation. 

• Multimodal integration: AI can merge imaging data with other data (symptoms, labs, 

genomics) to provide richer diagnostic suggestions – something a radiologist might not do in 
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real time due to workload. For example, an AI could weigh a patient’s liver MRI with their 

blood tests and genetic markers to stratify disease severity or recommend further tests. This 

ties into precision medicine: the AI doesn’t just see a shadow in an image, it knows the 

patient context and can judge significance. 

• Workflow automation: AI helps in time-consuming image tasks like segmentation 

(outlining organs or lesions), measuring volumes, counting lesions, or enhancing image 

quality. This saves radiologists time and standardizes results. For instance, segmenting a 

tumor’s volume on serial scans to track response to therapy can be automated by AI. 

• Point-of-care imaging and decision support: AI integrated into portable ultrasound devices 

can guide non-experts to capture correct views and automatically detect conditions (like an 

AI ultrasound stethoscope for cardiac function or lung ultrasound to detect pneumothorax in 

ER). This broadens who can perform and interpret imaging, which combined with network 

connectivity means an expert can remotely confirm if needed. 

6G’s role is vital in a few respects: 

• Fast image transfer: Many advanced imaging modalities produce huge data sizes (one full-

body MRI or CT can be in gigabytes). Transmitting these swiftly is needed for tele-diagnosis 

or for cloud AI processing. A 6G network in a hospital could upload a CT scan to a cloud AI 

service in a split second, as opposed to perhaps tens of seconds on 5G or minutes on 4G. This 

could make the difference in emergency cases (like trauma or stroke) where every second in 

diagnosing counts. For rural clinics, 6G via satellite could allow them to send scans to urban 

centers for consults without the current bandwidth worries. 

• Real-time imaging collaboration: With high bandwidth and low latency, multiple experts 

can look at imaging together in real time, even employing AR/VR. For example, a tumor 

board (multidisciplinary team) can virtually meet, looking at a patient’s scans in 3D, each 

interacting via a shared virtual workspace, annotating or pointing out features. 6G can 

support the needed data exchange to keep all participants in sync visually. 

• On-demand imaging in telemedicine: As touched in telemedicine, if during a remote 

consultation a certain imaging test is needed, a 6G-connected portable imaging device (like a 

handheld ultrasound) can be used by a nurse or even the patient (with guidance) and the 

images stream live to the doctor and AI systems. With 5G this is feasible for ultrasound; 6G 

could extend this to higher resolution modalities or multiple simultaneous streams (e.g., two 

ultrasound probes at once, different angles). 

• Edge/cloud hybrid processing: Some imaging AI might run on local edge servers (like an 

AI that needs to respond instantly during an interventional procedure), while others run in the 

cloud (like heavy 3D reconstructions, or training new models). 6G makes it seamless to tap 

into either resource; if a local server is busy, images can be routed to cloud without worrying 

about delay or cost of bandwidth. This flexibility ensures the AI tools are available when 

needed. 
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• Global access to specialists: For rare or complex cases, images can be shared globally to top 

specialists or specialized AI models (for instance, an AI trained specifically on a rare disease) 

with negligible friction. This democratizes diagnostics. A patient in a developing country 

could get their MRI reviewed by an AI model trained on data from the best centers 

worldwide, via the 6G network, and maybe a human specialist counterpart as well, within 

minutes. 

Explainable AI in imaging is particularly important in clinical adoption. Radiologists are 

more likely to trust an AI that highlights why it thinks an area is pneumonia or a tumor, for 

instance by circling the region of interest, rather than just an output. The frontiers article by 

Kumar et al. [2] showcased a self-explainable AI architecture where the AI’s predictions 

come with clear justifications. In imaging, this is often via heatmaps or saliency maps on the 

image. Those, too, are data that need to be transmitted (though small compared to the image 

itself). 6G makes it trivial to send not only the original image but also any AI-derived 

overlays back to the clinician’s workstation in realtime [75][76][77]. 

3.5 Smart Hospitals and Healthcare IoT Systems 

Beyond individual patient-focused applications, AI and 6G together can elevate the entire 

healthcare facility into a smart hospital – a highly interconnected, intelligent environment 

that improves operational efficiency, patient experience, and clinical outcomes. A smart 

hospital employs a multitude of IoT devices (as discussed in Section 2.3) not only for patient 

monitoring but also for asset tracking, environmental control, logistics, and administrative 

workflows. AI serves as the “brain” that analyzes data from these myriad sources and 

optimizes hospital functions, while 6G is the “nervous system” that links every sensor, 

device, and system in real time [78]. 

Key components of a 6G-enabled smart hospital might include: 

• Real-time location and asset tracking: Every critical piece of equipment (ventilators, 

wheelchairs, infusion pumps) can be tagged and tracked over the network. AI can manage 

inventory and predict needs – for example, knowing how many infusion pumps are free on 

each floor and reallocating them intelligently, or guiding staff to the nearest equipment 

needed via an app. If an emergency occurs, the system quickly locates the nearest crash cart 

or defibrillator and can even autonomously dispatch a robot to fetch it. 6G’s capacity ensures 

that tracking hundreds or thousands of assets (each maybe sending out frequent location 

beacons) is seamless. 

• Environmental automation: IoT sensors measure temperature, humidity, lighting, and air 

quality in patient rooms and operating rooms. AI can adjust HVAC systems to optimal levels 

(for patient comfort or to maintain sterile environment). 6G connectivity allows sensors and 

actuators to be densely deployed and centrally coordinated. For instance, if an AI predicts an 

increased risk of infection in an ICU, it might increase air circulation or UV disinfection 

autonomously. Or lights might adjust color temperature throughout the day for patient 

circadian health. These adjustments happen continuously, informed by AI analytics on sensor 

data. 
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• Workflow and staff coordination: Nurses and doctors can wear smart badges or carry 6G-

connected devices that allow AI to know their location and context (with full consent and 

appropriate privacy). The AI task management system can then route patient alerts to the 

closest nurse or the one with the right skills available. If one nurse is overloaded, AI can 

reassign tasks to others and send a prompt to supervisors if overall staffing is insufficient. 

During procedures, if an extra pair of hands is needed in OR, the system knows who’s free 

nearby. Essentially, the hospital operates like an AI-orchestrated symphony, reducing delays 

like waiting for porters to move patients or lost time finding colleagues. 

• Predictive resource allocation: By analyzing trends (admissions, discharges, surgeries 

scheduled, etc.), AI can predict bottlenecks before they happen – such as an afternoon surge 

in ER patients or next week’s bed occupancy given current admission rates. The hospital can 

then proactively open surge beds, allocate staff, or divert non-urgent cases. 6G linking all 

departmental systems (ER, wards, labs) ensures the data is current. A 2025 study integrating 

6G tech in smart hospitals found that such predictive analytics significantly enhance 

operational efficiency by anticipating demand and optimizing bed allocation. This reduces 

wait times and improves patient throughput. 

• Telepresence and robotics: In a smart hospital, not only are people connected, but also 

service robots – for cleaning, delivering medications or meals, guiding visitors, etc. These 

robots rely on robust wireless connectivity to navigate and to receive tasks from the AI brain. 

6G’s reliability and low latency allow many robots to operate simultaneously without losing 

connection or colliding. AI coordinates them – for example, scheduling cleaning robots to 

sanitize a room right after patient discharge and before the next admission (with 6G notifying 

the robot exactly when the patient left and when the next is arriving). Telepresence robots can 

allow specialists or translators to appear in patient rooms virtually on demand. For instance, if 

a patient speaks a rare language, a translator on a telepresence screen could be routed to the 

room within minutes; 6G can stream the needed video with no lag, and AI might auto-detect 

the language need from records. 

• Intelligent security and safety: AI can enhance hospital security by analyzing CCTV 

footage (with appropriate ethical constraints) to detect unauthorized access or patient falls in 

real time. If a patient with dementia wanders off, the system notices and can alert staff 

immediately with their location. 6G’s network unifies cameras, access control, and alarm 

systems, so an alert can propagate instantly to security staff smartphones, or even pre-

emptively lock certain doors. Similarly, AI can monitor cyber-security on the hospital 

network (since everything is connected, attacks can be catastrophic). AI systems guard 

against intrusions, while 6G’s design for security (using quantum communication or 

advanced encryption possibly) helps protect data in transit. 

A fully realized smart hospital example: A patient is admitted through the ER with chest pain. 

The moment they arrive, their wearable (if they have one) or initial vitals connect to the 

hospital’s system via 6G. AI triages that this could be a heart attack. An alert is sent to the 

catheterization lab to prep. The nearest cardiologist gets a ping on their device. A bed in ICU 

is reserved automatically by the bed management AI. En route to cath lab, a robot delivers the 
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needed surgical kit, having been signaled by the inventory AI. During the procedure, the AI 

monitors the patient’s vitals and warns of any instability (in addition to normal alarms, it 

notices subtle trends that might predict a complication). After the procedure, the AI in ICU 

notes that based on data, the patient’s risk of arrhythmia is high and suggests keeping a 

defibrillator handy – which a nurse grabs promptly because the system flagged it. Meanwhile, 

the patient’s family arrives and a concierge robot greets them and guides them to the ICU 

waiting area. All of these micro-interactions are enabled by a combination of ubiquitous 

connectivity and intelligent orchestration [79][80]. 

From an infrastructure viewpoint, smart hospitals will lean on 6G private networks – 

essentially a dedicated 6G installation for the facility, ensuring high quality and privacy of 

internal communications. Technologies like network slicing could isolate medical device 

traffic from less critical traffic, etc. Kumar et al.[2] specifically examined a 6G-based smart 

hospital model, showing that ultralow latency and massive device connectivity foster 

seamless communication between medical devices and systems, enabling intelligent decision-

making and optimized resource allocation. They also highlight challenges like 

interoperability and the need for standard protocols in such a complex environment, which 

we will touch on in Section 4. 

Importantly, energy efficiency and sustainability can be integrated into smart hospitals. As 

noted, 6G networks might incorporate energy harvesting and efficient communication. The 

hospital can utilize renewable energy sources (solar, etc.), and AI manages their use, possibly 

reducing power to certain systems during low usage times. A cited point in the frontiers paper 

was that 6G smart hospitals prioritize green practices and could reduce carbon footprint while 

leveraging cutting-edge tech. AI might, for example, schedule heavy computing tasks (like 

batch AI training on hospital data for research) to times when solar power is abundant or 

when grid demand is low [81]. 

Smart hospitals are not purely futuristic; elements exist today (some hospitals have 

autonomous pharmacy robots, basic IoT integration, etc.). But with 6G and more advanced 

AI, these elements will connect into a cohesive whole. The outcome should be not only 

efficiency but patient-centric care. Patients in a smart hospital may experience shorter wait 

times, fewer mistakes (e.g., AI cross-checking medication orders to avoid errors), more 

comfort (environments adjusting to them), and more engagement (perhaps via apps that 

update them about their care progression or allow them to request services easily). 

The true test of smart hospitals will be in improving outcomes and reducing costs. Many 

institutions are collecting data for AI; 6G will accelerate that and broaden it. It’s plausible 

that insurance companies or governments will eventually push for such systems if they 

demonstrably keep people safer and reduce expensive events like ICU stays by preventing 

deterioration through early intervention [82]. 

4. CHALLENGES AND FUTURE DIRECTIONS 

While the promise of AI and 6G in modern medicine is immense, realizing it in practice faces 

numerous challenges. These challenges span technical, ethical, and operational domains and 
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must be carefully addressed to ensure safe, equitable, and effective healthcare outcomes. In 

this section, we discuss some of the key issues: data privacy and security in an AI+6G 

ecosystem, the need for interoperability and standards, the importance of explainability and 

trust in AI decisions, infrastructure and cost considerations, and potential human and 

organizational factors. We also highlight emerging research and solutions for these 

challenges, and outline future directions to guide ongoing developments. 

4.1 Data Privacy and Security: Healthcare data is among the most sensitive personal 

information. In a 6G-connected world where potentially every heartbeat, vital sign, or 

genomic sequence might be transmitted for AI analysis, ensuring privacy is paramount. A 

breach or hack in a highly connected system could expose vast amounts of patient data. 

Traditional safeguards like encryption and access controls remain necessary but not 

sufficient. Thus, privacy-by-design approaches are being developed. One promising solution 

is Federated Learning (FL), which enables AI model training across distributed data sources 

without pooling raw data centrally. In an FL scenario, a hospital’s local server trains an AI 

model on its patient data, and only the learned parameters (not the underlying patient records) 

are shared to a central aggregator that updates a global model. This way, sensitive data stays 

on-premise, greatly reducing privacy risks while still benefiting from cross-institutional 

learning. Such approaches are particularly crucial as 6G networks link many hospitals and 

personal devices – FL can leverage the “network effect” (learning from many nodes) without 

violating confidentiality. Additionally, techniques like differential privacy (adding noise to 

data or model updates to obscure individual contributions) and secure multi-party 

computation are being explored to further harden privacy in multi-center medical AI. 

In tandem, ensuring security of the data in transit and at rest is critical. 6G will likely employ 

advanced encryption (potentially even quantum-resistant algorithms) for all communications. 

However, connected healthcare systems also face internal threats: unauthorized access or 

misuse by insiders, and malware targeting IoT devices. AI can help here too – AI-driven 

security monitoring can learn normal network behavior and detect anomalies or breaches in 

real time (for example, an infusion pump sending data outside normal patterns could indicate 

it’s compromised). Research on 6G security identifies “distributed artificial intelligence” and 

intelligent edge computing as both an opportunity and a challenge – while AI can bolster 

security, the large attack surface of so many connected devices is a concer. One emerging 

tool is blockchain technology for healthcare data integrity and access control. By logging all 

data transactions on an immutable ledger, blockchain can ensure accountability and detect 

tampering. For instance, when patient records are accessed or AI model parameters are 

updated, these events can be recorded via blockchain to provide a transparent audit trai. Some 

6G health proposals even integrate blockchain with AI to secure remote robotic surgery data 

flows and IoMT communication. Moving forward, robust regulatory frameworks and 

industry standards will be needed to enforce privacy and security measures. International 

standards bodies are already discussing 6G security specifications and healthcare data 

interoperability (e.g., extensions of HL7/FHIR for real-time data sharing) to ensure that 

devices from different vendors can securely communicate. 
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4.2 Interoperability and Standards: With the proliferation of medical IoT devices and AI 

systems, interoperability becomes essential. A smart hospital might use hundreds of devices 

from dozens of manufacturers – ventilators, monitors, IV pumps, imaging modalities – and 

all need to speak a common language for data exchange. Lack of standardization can lead to 

integration failures, data silos, or unsafe behavior (e.g., if an infusion pump cannot 

understand an automated dose adjustment command from an AI system). To address this, 

initiatives are underway to develop common interface standards and communication 

protocols tailored to healthcare IoT. For example, the IEEE and other bodies are exploring 

6G healthcare communication standards that ensure plug-and-play compatibility. On the data 

side, existing healthcare standards like DICOM (for imaging) and HL7 FHIR (for health 

records) are being extended to accommodate streaming and real-time data typical in IoT 

environments. 

Interoperability also extends to AI systems themselves. Algorithms developed at one hospital 

should ideally be deployable at another with minimal friction. Efforts like the OpenAI 

healthcare initiative and open-source models aim to create shareable AI models that adhere to 

common input-output schemas. The lack of such standards today means many AI tools are 

bespoke and not generalizable, which slows adoption. Stakeholders recognize this; for 

instance, a 2024 survey of health system leaders found that integrating AI into workflow and 

systems was a major challenge, with 53% reporting they had not yet established dedicated 

teams or standards for AI governance The community is responding by forming multi-

disciplinary consortia to pilot interoperability frameworks (like the IHE – Integrating 

Healthcare Enterprise – initiative for device interoperability) . 

4.3 Explainability, Trust, and Ethical AI: The best AI+6G system will fail to deliver 

benefits if clinicians and patients do not trust it. Building trust requires that AI decisions are 

transparent and accountable. This is especially true in medicine, where decisions can be life-

critical and liability is a concern. Many current AI models, particularly deep learning 

networks, are “black boxes” that provide little insight into their reasoning. In healthcare, this 

is often unacceptable – a physician is unlikely to follow an AI treatment recommendation 

without understanding the rationale. To address this, researchers are focusing on explainable 

AI (XAI) techniques. As noted earlier, one approach is designing models that inherently 

provide interpretable outputs (e.g., highlighting image regions that led to a diagnosis, or 

listing the patient attributes that most influenced a risk prediction. Such self-explanatory AI 

systems can present results through dashboards or natural language explanations that 

clinicians find intuitive. Early studies indicate this can greatly improve provider acceptance 

and trust, as it allows a synergy between human expertise and AI insight – the clinician can 

verify the AI’s reasoning against their own. Explainability is also vital for patients, especially 

as AI-driven decisions (like automated medication adjustments) become more common. 

Patients have the right to an explanation for decisions about their care. Some jurisdictions are 

enacting regulations for “AI transparency” in healthcare, aligning with the fact that in a 2024 

survey, *72% of health system leaders supported government regulation of AI in healthcare. 
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4.4 Infrastructure and Cost Challenges: Deploying AI and 6G at scale in healthcare will 

require significant infrastructure investment. Hospitals may need to upgrade to 6G-

compatible wireless infrastructure (small cells, distributed antenna systems, edge computing 

servers) which can be costly. Likewise, outfitting a facility with thousands of IoT sensors and 

integrating them with existing IT systems is non-trivial. Ensuring robust network coverage in 

older or large hospital buildings might be challenging (6G high-frequency signals have 

shorter range). There is also the challenge of managing the data deluge – storing and 

processing the flood of data produced. Healthcare providers will need to invest in scalable 

data architectures, cloud services, and backup systems. The cost factor raises the concern that 

wealthier health systems could adopt these innovations faster, widening the gap with under-

resourced facilities. It will be important for industry and governments to facilitate more 

equitable access, perhaps via public-private partnerships or subsidized programs for digital 

health infrastructure in rural and low-income areas. 

The timeline of 6G deployment also means there will be a transitional period where 5G and 

6G co-exist. Systems must be backward-compatible to an extent, or at least fail-safe (e.g., if a 

6G link drops, a 5G or wired link should take over for critical data). This requires thoughtful 

design and adds complexity. Another infrastructure challenge is power and reliability: with 

so many connected components, ensuring uninterrupted power (with battery backups for 

critical nodes) and network redundancy is vital for patient safety. Hospitals will need to 

update their disaster preparedness plans to account for potential AI or network outages – for 

example, maintaining the ability to revert to manual workflows if needed, and performing 

regular drills. 

4.5 Human and Organizational Factors: Modernizing healthcare with AI and 6G is not just 

a technical endeavor, but also a human one. Staff need to be trained to use new systems and 

to understand their limitations. There can be resistance to change, especially if new 

workflows are perceived as burdensome or if staff fear being displaced by automation. Clear 

communication that these technologies are augmenting and not replacing clinicians is 

important. Many routine documentation tasks may be offloaded to AI, ideally giving 

providers more time for direct patient care – framing it this way can help gain acceptance. 

Including clinicians in the development and implementation process (user-centered design) is 

also key so that tools actually solve problems in the clinical workflow rather than create new 

hurdles. 

Finally, there is the patient perspective. Patients must consent to the use of AI and extensive 

data monitoring. Informed consent processes may need to explain in simple terms how an AI 

or networked device functions and what data it collects. Public education will be crucial so 

that patients trust these systems and don’t refuse beneficial technology out of fear or 

misunderstanding. Some patients might worry about privacy or being “treated by a robot” – 

transparency and options to opt out will help maintain trust. Notably, surveys have shown 

mixed patient attitudes towards AI: some are excited about faster, data-driven care, while 

others are wary. Over time, successful case studies (e.g., an AI warning that prevented a 

medical crisis) will help build public confidence. 
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4.6 Future Directions: Addressing the above challenges is an active area of research and 

policy development. On privacy/security, future 6G standards may incorporate built-in 

support for federated learning and edge privacy, and organizations will likely establish data-

sharing consortiums with strict privacy-preserving protocol. On interoperability, open APIs 

and adherence to international standards will be a procurement requirement for hospital 

technologies. Regulatory bodies (such as the FDA in the U.S. or EMA in Europe) are already 

creating pathways for AI algorithm approvals, emphasizing validation, monitoring, and 

transparency. Continuous post-deployment monitoring of AI (sometimes called “AI 

pharmacovigilance”) is expected to become routine – models in use will need to be 

periodically re-evaluated for performance drift or emerging biases, especially as they get 

exposed to new data population. 

We anticipate a push towards human-AI teaming paradigms, where AI is designed to 

complement human strengths rather than function in isolation. This might involve AI systems 

that can explain their uncertainty (so a doctor knows when the AI is not confident), or 

interfaces that make it easy for clinicians to provide feedback to the AI (thereby continuously 

improving it). In surgical robotics, for example, rather than full automation, researchers are 

focusing on “shared control” where AI handles routine subtasks and the surgeon oversees the 

critical decisions – making the technology an intelligent assistant rather than an autonomous 

surgeon. 

Ethically, frameworks like “trustworthy AI” principles (fairness, accountability, transparency, 

and ethics) will guide design and deployment. Many institutions are forming ethics boards to 

review AI use cases prospectively. Governments may enforce that any AI used in standard 

care undergo rigorous clinical trials similar to drugs or devices.  

5. CONCLUSION 

The integration of AI and 6G in healthcare holds the promise of more precise, proactive, and 

patient-centered medicine. It shifts the paradigm from reactive care (treating problems after 

they become obvious) to proactive care (anticipating and preventing issues). It can extend the 

reach of quality healthcare to remote or underserved regions via telepresence and remote 

services. It may also improve efficiency and reduce burnout by automating tedious tasks and 

optimizing workflows, allowing healthcare professionals to focus on the human touch – 

empathy, complex decision-making, and critical interventions – which AI cannot replace. We 

stand at an inflection point: as 6G networks start to roll out and AI techniques mature further, 

their convergence in medicine could drive innovations comparable to the introduction of the 

internet or medical imaging in terms of impact. 

Realizing this vision will require continued multidisciplinary collaboration, pilot studies to 

demonstrate efficacy and safety, and a vigilant approach to ethics and inclusivity. If done 

correctly, “data to diagnosis” via AI and 6G will no longer be a catchy phrase but a routine 

reality of healthcare delivery – one that delivers better outcomes for patients and more 

sustainable systems for societies. Modern medicine has always been defined by its tools, 

from the stethoscope to the MRI; AI and 6G represent the next generation of tools, effectively 

enabling a form of medicine that is smarter, faster, and more connected than ever before. The 
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coming decade will be critical in translating this potential into practice, and the work must 

begin now to ensure that when the technology is fully available, healthcare is ready to harness 

it for the benefit of all. 
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