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Abstract: Explainable Artificial Intelligence (XAI) in healthcare seeks to make the behavior and reasoning of 

complex machine learning models transparent to stakeholders. As AI systems become increasingly prevalent in 

clinical decision support, their “black-box” nature raises concerns about trust, safety, and ethical use. This paper 

presents a comprehensive overview of explainability and model interpretability in healthcare, emphasizing 

theoretical foundations, key challenges, and emerging solutions. We begin by defining XAI and its importance 

in the medical context, outlining how interpretability can enhance clinician and patient trust without sacrificing 

model performance. We then review the broad applications of XAI across healthcare domains, illustrating its 

growing adoption. Next, we delve into key challenges that impede the integration of XAI into clinical 

workflows: the need for trust and transparency, the complexity of state-of-the-art models, ethical and regulatory 

requirements for explainability, data privacy constraints, and practical barriers to deployment in healthcare 

settings. This future entails interdisciplinary collaboration, standardized evaluation metrics for explanations, and 

regulatory frameworks that encourage safe, transparent AI in medicine. By addressing current challenges and 

leveraging emerging methods, XAI can foster appropriate trust in AI-driven healthcare and ultimately improve 

decision-making and patient outcomes. 
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1. INTRODUCTION 

Artificial Intelligence (AI) is reshaping healthcare by delivering powerful data-driven tools 

for diagnosis, prognosis, and treatment recommendation. Complex machine learning models 

– particularly deep neural networks – have achieved remarkable accuracy in tasks such as 

medical image analysis, outcome prediction, and therapy planning. However, a critical barrier 

to routine clinical adoption of these AI systems is the lack of explainability or interpretability 

of their decision-making processes. Healthcare professionals and patients are often reluctant 

to trust a “black-box” model whose internal logic remains opaque, especially in high-stakes 

medical decisions that demand accountability and justification [1][2]. This concern has 

catalyzed intense interest in Explainable AI (XAI) for healthcare, which aims to make AI’s 

reasoning transparent and understandable to humans [8][9]. 

Research in explainable and interpretable ML has grown rapidly to meet these needs. Figure 

1 illustrates the surge in XAI-focused publications over the past several years, highlighting 

the burgeoning interest post-2016 and especially in the 2020s [2]. This trend reflects both 

advances in XAI techniques and the recognized necessity of explanations for AI systems 

mailto:puneetgarg.er@gmail.com1
mailto:gunjanbeniwal@msit.in2
mailto:priya@msit.in3
mailto:monikadhiman20@gmail.com4
mailto:chaudhrymeeta1@gmail.com5


Eksplorium p-ISSN 0854-1418 

Volume 46 No. 1, May 2025:  104–133 e-ISSN 2503-426X 

 

105 
 

deployed in sensitive domains like healthcare. Indeed, explainability has become a policy 

priority and a research frontier as stakeholders realize that improving model transparency is 

essential for clinical acceptance [1][5][6]. Despite this progress, significant challenges remain 

in achieving explainable AI that clinicians will trust and routinely use. Explainability 

methods must navigate a delicate balance: providing meaningful insights into complex model 

behavior without overwhelming users or compromising the model’s accuracy [4][3][7]. In the 

healthcare context, explanations need to satisfy multiple stakeholders – from data scientists 

validating model behavior, to physicians seeking clinical rationale, to patients demanding 

understandable reasoning for personal health decisions. Each stakeholder may require a 

different depth and form of explanation (e.g., a clinician might ask “Why did the model 

predict this patient is high-risk?” whereas a patient might ask “What factors led to this 

diagnosis?”). Moreover, explanations must be delivered under constraints of privacy 

(sensitive patient data), regulation, and the time-critical nature of clinical workflows [13][14]. 

This paper provides a comprehensive review of explainable AI and model interpretability in 

healthcare, focusing on overarching challenges and future directions rather than disease-

specific case studies. We generalize across medical domains to identify common themes in 

how explainability can support clinical AI systems. First, we discuss the theoretical 

foundations of XAI in healthcare, clarifying what it means for an AI model to be 

“explainable” or “interpretable” and why those properties are crucial in medicine. We then 

outline the range of current applications of XAI across healthcare, demonstrating its 

relevance to diverse clinical scenarios. Next, we delve into the key challenges that must be 

addressed to integrate XAI into routine healthcare: establishing appropriate trust and 

accountability, achieving transparency with highly complex models, meeting ethical and 

regulatory standards, protecting patient privacy, and ensuring that explainable models fit 

seamlessly into clinical workflows. We organize these challenges into distinct categories 

(Section 3) and illustrate each with recent examples or evidence from the literature. In 

Section 4, we survey emerging solutions and techniques designed to tackle these challenges – 

including privacy-preserving learning strategies (like federated learning), model design 

innovations (like attention mechanisms and inherently interpretable models), advanced 

explanation techniques (such as counterfactual reasoning), visualization and interaction tools 

for clinicians, and hybrid approaches that combine knowledge-based and data-driven 

methods. Two summary tables are provided: Table 1 catalogues the major challenges and 

their implications, and Table 2 maps the emerging solutions to the challenges they aim to 

address. Throughout the paper, we include conceptual diagrams (to clarify theoretical ideas) 

and empirical figures (to present evidence of trends and outcomes in XAI research). Finally, 

we conclude (Section 5) by synthesizing the insights and highlighting future directions – 

emphasizing the need for interdisciplinary collaboration, standardized evaluation of 

explainability, and human-centered design in the next generation of explainable AI systems 

for healthcare. 

The ultimate goal is to inform researchers and practitioners about the current state of 

explainable AI in healthcare, and to guide efforts toward AI tools that are not only accurate 

but also transparent, trustworthy, and aligned with clinical needs. By addressing the identified 



Eksplorium p-ISSN 0854-1418 

Volume 46 No. 1, May 2025:  104–133 e-ISSN 2503-426X 

 

106 
 

challenges and leveraging emerging innovations, the community can move closer to AI 

systems that clinicians readily adopt and patients confidently accept, thereby unlocking the 

full potential of AI-driven improvements in healthcare outcomes. 

2. EXPLAINABLE AI IN HEALTHCARE: CONCEPTS AND APPLICATIONS 

2.1 Defining Explainability and Interpretability 

In the context of AI, explainability refers to the ability of a model to provide reasons or 

mechanisms for its decisions in a way that humans can understand [2]. A closely related term, 

interpretability, often denotes the degree to which a human can intuitively comprehend the 

model’s internal workings (some literature uses these terms interchangeably, while others 

draw subtle distinctions). In practical terms, an explainable AI system can answer questions 

like “Why did the model make this prediction?” by highlighting relevant features or providing 

a human-comprehensible justification [2]. Interpretability is especially critical in medicine, 

where understanding why a recommendation was made can be as important as the 

recommendation itself for establishing clinical credibility and accountability [10][11][12]. 

There are two broad approaches to achieving explainability in AI models [2]: 

• Intrinsic Interpretability (Transparent Models): Using models that are inherently 

interpretable due to their simple structure. Examples include decision trees, rule-based 

systems, linear or logistic regression models, and generalized additive models. These models 

are often called “white-box” because their decision process can be followed step-by-step by 

humans. In healthcare, an intrinsically interpretable model might be a small decision tree for 

triage or a logistic regression scoring system for disease risk – systems that clinicians can 

manually inspect and verify. Intrinsic interpretability is advantageous because it provides 

built-in explanations (for instance, a decision tree yields human-readable paths like “IF age > 

60 and smoker = yes THEN risk = high”), but these models may lack the accuracy of more 

complex models on high-dimensional medical data [15][16]. 

• Post-hoc Explainability (Explainability for Black-Box Models): Applying techniques to 

explain the decisions of an already-trained complex model without altering its internal 

architecture. These methods treat the AI model as a black box and produce auxiliary 

explanations for its outputs. Common post-hoc approaches include feature attribution 

methods (e.g., SHAP values or LIME) that assign importance scores to input features for a 

given prediction, visualization methods (e.g., saliency maps in medical imaging that highlight 

influential regions of an image), simplified surrogate models that approximate the black-box 

model’s behavior, and counterfactual explanations that indicate how changing an input would 

change the output. Post-hoc methods allow clinicians to reap the benefits of complex models 

(like deep neural networks) while still obtaining some explanation of why a particular output 

was produced. However, these explanations are often approximations and may not perfectly 

reflect the model’s true reasoning [17][18]. For example, a linear approximation via LIME 

around a specific case provides insight into local decision factors, but it doesn’t capture the 

model’s full global logic. Most explainability methods rely on simpler proxy models or 

visualizations, meaning they can offer only an approximation of the black-box’s internal 
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rationale – not true transparency – and thus have limitations in faithfully improving user 

understanding and trust [19][20]. 

Explainability can also be considered at different stages of the AI pipeline. Some models are 

designed to be interpretable by structure (intrinsic, as above), whereas in many cases we 

apply explainability after the model is trained (post-hoc). Explainability methods can even 

assist in data understanding (for example, uncovering which input features are most 

influential during model development). Regardless of stage, the goal of XAI in healthcare is 

to align the model’s decision-making with human cognitive frameworks. This means the 

explanation should ideally connect to medical concepts that clinicians find meaningful 

(symptoms, lab values, imaging findings, risk factors, etc.) [21][22][23]]. For example, an 

ideal explanation for a machine-learned diagnostic model might be: “The AI predicts 

pneumonia with 90% confidence because it identified an opacity in the lower left lung field 

on the X-ray and the patient’s white blood cell count is elevated,” linking the model’s 

internal features to established clinical reasoning. Achieving this level of intuitive 

explanation remains challenging, but research is progressing toward bridging the gap between 

complex algorithmic logic and the domain knowledge of clinicians. [24][25] 

2.2 Why Explainability Matters in Healthcare 

In general AI applications, explainability is often touted for increasing user trust and aiding in 

system debugging. In healthcare, these benefits are magnified and joined by additional 

critical motivations: 

• Trust and Adoption: Doctors are more likely to trust and adopt AI tools if they can verify 

the reasoning behind predictions [3]. Clinical decisions directly impact patient lives; thus, a 

clinician will be understandably hesitant to base a diagnosis or treatment on an algorithm’s 

output without understanding how it was derived. A recent systematic review of XAI’s 

impact on clinician trust found that providing explanations (either visual or textual) generally 

increased their confidence in AI recommendations, particularly when the explanations were 

clear and relevant to clinical context [3]. For example, in several studies XAI visualizations 

or narratives improved clinicians’ trust in an AI’s diagnosis compared to using the AI with no 

explanation at all [3]. On the other hand, misleading or overly complicated explanations can 

erode trust – thus the quality of explanation is key (simply having an explanation is not a 

panacea). It is worth noting that some studies found no significant effect of XAI on trust, 

indicating that the presence of an explanation does not automatically improve trust if the 

explanation is not useful or understandable [3] [26][27].  

• Transparency and Accountability: In medicine, decisions often need to be justified to 

multiple parties – hospital administrators, patients, or even courts in cases of malpractice. 

Explainable models provide a traceable justification for each output, which can be crucial 

for accountability. For example, if an AI system recommends sending a patient to the ICU, an 

explanation allows the care team to communicate the rationale (e.g., “the system detected 

early signs of sepsis in the vitals and labs”) which helps everyone involved understand and 

agree with the action. Moreover, transparency is ethically important: patients have a right to 

an explanation for decisions affecting their care, aligning with principles of informed consent 
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and shared decision-making in medicine. The ethical requirement for explainability is 

increasingly discussed in literature, with some arguing that opaque AI systems should not be 

used in clinical practice precisely because they undermine informed consent and the 

physician’s duty to explain decisions to the patient [7]. Conversely, a lack of transparency 

makes it difficult to assign responsibility when errors occur and can impede learning from 

mistakes (if nobody understands the AI’s reasoning, it’s hard to fix it or to know when to 

override it) [28][29][30]. 

• Safety and Error Detection: Explainability can act as a safety net by allowing humans to 

catch errors or biases in the model’s reasoning. If an AI mispredicts because it was paying 

attention to an irrelevant artifact, a human reviewer is more likely to discover this through 

explanation tools. For instance, an explainability analysis in one case revealed that a 

supposedly high-performing skin lesion classifier was focusing on surgical marking stickers 

in the images rather than the lesion itself – a spurious correlation that a human could detect 

once the model’s attention was visualized. In healthcare, where biases in data or unusual 

input conditions can lead to dangerous errors, having insight into the model’s decision basis 

is critical for validation and calibration of trust [31].  

• Ethical and Regulatory Compliance: As mentioned, regulations and guidelines increasingly 

demand explainability for high-risk AI applications. In healthcare, organizations like the 

FDA now consider the interpretability of AI/ML tools as part of the evaluation process. The 

European Union’s AI Act will classify medical AI as high-risk and likely mandate 

appropriate explainability or transparency features [7]. From an ethical standpoint, 

explainability ties into principles of beneficence and non-maleficence: one must ensure AI 

benefits patients and does not inadvertently cause harm. Explanations allow detection of 

potential harm or bias (e.g., uncovering that a predictive model systematically underestimates 

risk for a certain minority group – an insight that might surface through examining 

explanation outputs across cohorts) [32].  

• Improving Model Performance and Human–AI Teamwork: Interestingly, explainability 

can also improve the effective performance of an AI when used in tandem with human 

experts. By understanding the model’s strengths and weaknesses via explanations, clinicians 

can calibrate when to trust the model and when to be cautious or override it [4]. For example, 

if an AI imaging tool’s explanation highlights an unusual region as key evidence for a tumor, 

a radiologist might scrutinize that region more carefully, potentially catching something they 

would have missed or confirming a subtle finding. Explanations can also highlight when the 

model is unsure (e.g., revealing contradictory evidence, or showing a near-balance of factors) 

which can prompt humans to gather more information. Studies have begun to show that 

human–AI teams make better decisions when the AI provides helpful explanations, especially 

if the explanation format is intuitive to the human user [33].  

2.3 XAI Techniques and Approaches in the Medical Context 

To ground the discussion, we briefly overview the types of XAI techniques commonly 

employed in healthcare AI and how they map onto practical needs: 
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• Feature Attribution Methods: These methods, like LIME (Local Interpretable Model-

Agnostic Explanations) and SHAP (SHapley Additive exPlanations), are widely used to 

explain ML models in medicine. They typically output a set of feature contributions for a 

given prediction. For instance, a SHAP explanation for a mortality risk model might show 

that “low oxygen saturation” and “elevated lactate” were major contributors to a high-risk 

prediction, whereas “younger age” and “no comorbidities” pushed the risk down. Such 

quantitative attributions help clinicians see which factors the model considered most 

important. SHAP and related methods have been applied to numerous clinical models (for 

example, explaining ICU sepsis predictions by showing which vital signs and labs most 

influenced the risk score). Feature attributions are popular because they are model-agnostic 

and relatively easy to compute, but care must be taken in interpretation – they explain the 

model’s output, not necessarily the true causal relationships [34][35][36]. 

• Saliency Maps and Attention Maps: In medical imaging applications of AI (radiology, 

pathology, dermatology, etc.), visual explanation techniques are common. These include 

saliency maps (e.g., gradient-based or Class Activation Maps) and attention maps that 

highlight the regions of an image most influential for a CNN’s prediction. For example, a 

saliency map on a chest X-ray processed by a pneumonia-detection model might highlight the 

area of the lungs with opacities that led to the “pneumonia” prediction, aligning with what a 

radiologist would consider evidence. Such visual overlays allow clinicians to verify that the 

model is “looking” at medically relevant features (e.g., lung fields, not an irrelevant part of 

the image) and can increase trust in the model’s decision if the highlighted regions make 

sense clinically [3]. Many recent healthcare AI systems incorporate attention mechanisms in 

neural networks specifically to provide this kind of interpretability – the network learns to 

weight certain parts of the input, and those weights can be visualized as an explanation 

[37][38][39]. 

• Rule-Based and Example-Based Explanations: Some XAI methods provide explanations 

in forms closer to human reasoning, such as decision rules or similar case examples. Rule 

extraction algorithms attempt to derive logical rules from a trained model. A rule-based 

explanation might be: “System predicts high stroke risk because: IF (age > 75) AND (atrial 

fibrillation present) THEN high risk.” This is essentially mimicking a clinical rule (similar to 

CHADS2 stroke risk criteria in this example) and is highly interpretable [40][41].  

• Self-Explaining Models and Attention-Based Models: Modern deep learning models 

sometimes incorporate architectural features that lend themselves to interpretation. As noted, 

attention mechanisms in models (especially in NLP and in emerging vision transformers) 

naturally provide weights that indicate what the model focused on. There are also self-

explainable neural networks that are designed to output not just a prediction but also an 

explanation. For example, some networks for clinical data are structured to first produce 

intermediate concepts (like “evidence of heart failure = yes/no”) and then make a prediction 

based on those concepts. The intermediate outputs serve as an explanation because they 

correspond to clinical findings [42][43].  
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• Interactive Visualization Tools: Beyond algorithmic methods, a practical aspect of XAI is 

how explanations are delivered to users. There are tools and platforms (some standalone, 

some integrated into clinical software) that allow users to explore model predictions and 

explanations. For example, an interactive dashboard might let a doctor adjust a patient’s risk 

factors (age, lab results, etc.) and see how the AI’s predicted risk changes – a “what-if” 

analysis interface. Another tool might overlay AI explanations on medical images and allow 

the user to toggle them on or off. Big tech companies and research groups have released 

general XAI toolkits (like Google’s What-If Tool, IBM’s AI Explainability 360) which can 

be tailored to healthcare applications. These tools can present explanations in multiple forms 

(text, charts, images) and at various levels of detail. In a clinical deployment, one might 

envision an EHR system where, next to an AI-generated risk score, there is a button or 

snippet that, when clicked, expands to show the top reasons for that score. Studies have found 

that providing such explanation interfaces can improve clinicians’ understanding and 

appropriate use of AI recommendations [3][44].  

Table 1 below summarizes key challenges in making AI in healthcare explainable, which we 

will explore in Section 3, along with their implications for XAI methods. Each challenge 

creates certain requirements for explainability (e.g., the trust challenge requires that 

explanations be easily understandable  

Table 1. Key Challenges for Explainable AI in Healthcare and Their Implications 

Challenge Description Implications for XAI 

Trust and 

Acceptance 

Clinicians and patients must have 

appropriate trust in AI 

recommendations. Black-box 

models can undermine trust or lead 

to over-reliance. 

Explanations need to be clear, 

clinically relevant, and accurate to 

foster trust and understanding [3]. 

Without trust, clinicians may reject 

AI advice even if accurate; 

conversely, over-trust must be 

mitigated by conveying model 

confidence and limitations. 

Transparency 

(“Black-Box” 

Problem) 

Many high-performing models 

(e.g., deep neural networks, 

ensembles) operate as “black 

boxes” with opaque decision logic. 

XAI methods must make model 

reasoning visible (through feature 

attributions, saliency maps, etc.)[1]. 

Surrogate models or visualizations 

can offer insight, but they provide 

only an approximation of the true 

logic[1]. Fully opening the black 

box remains challenging, so XAI 

strives for useful transparency even 

if complete transparency is 

unattainable. 

Model 

Complexity vs. 

Interpretability 

There is often a trade-off between 

model complexity and predictive 

accuracy versus human 

interpretability. Highly complex 

models tend to be less 

Need techniques to explain complex 

models without significantly 

sacrificing performance. This may 

involve hybrid approaches or 

constraints to retain 
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interpretable. interpretability[5]. In some cases, a 

slightly less complex (but 

interpretable) model may be chosen 

for deployment if its performance is 

sufficient for clinical needs. 

Ethical and 

Regulatory 

Requirements 

Ethical guidelines and laws 

demand explainability for AI in 

healthcare (e.g., EU AI Act 

requires explanations for high-risk 

AI). Accountability and fairness 

are key concerns. 

XAI is often a requirement for 

deployment[7]. Systems should 

provide reasons that clinicians and 

patients can understand, enabling 

informed consent and auditability. 

Explainable models help identify 

biases and ensure decisions can be 

justified, which is crucial for 

meeting legal and ethical standards. 

Data Privacy 

and Security 

Patient data is sensitive and 

protected by privacy regulations. 

Centralizing data or revealing 

patient-specific details in 

explanations can violate privacy. 

Approaches like federated learning 

allow training and explaining 

models across silos without sharing 

raw data[8]. Explanations 

themselves must be privacy-

preserving (avoiding disclosure of 

protected health information). This 

imposes constraints on XAI 

techniques – for instance, using 

aggregated or de-identified 

exemplars in example-based 

explanations. 

Integration 

into Clinical 

Workflow 

AI tools must fit within clinical 

workflows and time constraints; 

explanations should aid rather than 

impede decision-making. 

Explanations must be concise, 

context-specific, and delivered 

through user-friendly interfaces 

(e.g., embedded in the EHR or 

PACS)[10]. They should not 

overwhelm users with information 

or cause alert fatigue. Human-

centered design and clinician 

training are needed so that XAI tools 

complement the decision process 

instead of disrupting it. 

2.4 Applications of XAI Across Healthcare Domains 

Explainable AI techniques are being applied in a wide array of medical domains and tasks, 

underscoring their broad relevance. Rather than focusing on specific case studies, we 

highlight a few general application areas and the role of XAI in each: 

• Diagnostic Decision Support: AI models for assisting diagnosis (e.g., detecting diseases 

from medical images, lab results, or patient symptoms) benefit greatly from XAI. In medical 

imaging, for example, deep learning models can identify subtle patterns; XAI methods like 

saliency maps and concept annotations help radiologists see what the model identified as 

abnormal. If an AI flags a chest X-ray for pneumonia, an accompanying heatmap 
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highlighting lung infiltrates provides confidence that the model’s prediction is based on 

relevant imaging features. In pathology, CNNs analyzing slides can highlight regions with 

malignant features, effectively pointing the pathologist to areas of interest [2]. For diagnostic 

models using electronic health records (EHR) data, explanations might list the top 

contributing symptoms and risk factors for a given diagnosis [45][46].  

• Risk Stratification and Prognosis: Many healthcare AI systems provide risk scores (e.g., 

risk of 30-day readmission, surgical complication, disease progression). XAI is crucial here 

so that clinicians know why a patient is at high risk and can take appropriate action. For 

example, a risk model for cardiac events might explain that a patient’s risk is high due to 

factors like uncontrolled diabetes and hypertension and a history of smoking. Such an 

explanation allows the care team to verify that the risk prediction aligns with known risk 

factors and also to communicate to the patient which factors are most contributing to their 

risk (potentially motivating lifestyle changes or adherence to therapy). If a risk model were a 

black box, clinicians might distrust or ignore a high-risk flag, but with explanations, they can 

integrate the model’s insights into care planning (e.g., scheduling closer follow-up for a 

patient because the model identified concerning trends in their lab results [47][48]. 

• Therapy Recommendation and Treatment Planning: AI is increasingly explored for 

suggesting treatments (for example, recommending personalized chemotherapy regimens 

based on tumor genomics, or optimal insulin dosing for diabetics based on continuous 

glucose monitoring). In such settings, interpretability is essential for the AI to be accepted as 

part of the clinical decision-making team. If an AI recommends Treatment A over Treatment 

B, it should provide reasoning: e.g., “Treatment A is suggested because the patient’s tumor 

has biomarkers X and Y which were associated with better response to A in clinical studies”. 

This can be achieved by integrating clinical knowledge databases with the model’s output (a 

hybrid approach) [49].  

• Patient-facing Applications: While much XAI research focuses on clinicians, patients 

themselves can benefit from explainable AI tools. For instance, symptom-checker apps or 

chronic disease management apps use AI to give users advice (like “possible condition X, 

consider doing Y or seeking care”). Providing explanations in lay terms (e.g., “You reported 

symptom A and B, which often suggest condition X”) can increase a patient’s trust in the app 

and help them make informed choices. In mental health apps, if an AI chatbot flags a user as 

high-risk for depression relapse, an explanation might be delivered as part of the feedback 

(for example, pointing out that certain mood questionnaire answers or inactivity patterns 

triggered the concern). Patients generally have a right to an explanation when AI influences 

their care, and patient-facing XAI can improve engagement and adherence (people are more 

likely to follow health advice if they understand the rationale) [50][51]. Achieving patient-

friendly explanations is an area of ongoing development, likely involving natural language 

generation techniques to translate model insights into simple language [52]. 

• Healthcare Operations and Triage: Outside of direct patient care, XAI aids in 

administrative or operational AI systems. For example, algorithms that predict no-show 

appointments or optimize hospital bed management can provide explanations that help 
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administrators act. If a model predicts a patient is likely to miss an appointment, an 

explanation could be “Prediction based on the patient’s past attendance pattern and long 

travel distance to clinic.” This might lead the staff to reach out with a reminder or arrange 

transportation – an actionable use of the explanation. In emergency department triage, AI 

systems that prioritize patients could show the vital sign or symptom that drove a high-acuity 

classification, which nurses can double-check. This can serve as a second set of eyes; if the 

explanation highlights something the triage nurse overlooked (e.g., subtle low oxygen level), 

it can improve care, whereas if it highlights something irrelevant, the nurse knows the model 

may have erred. By making AI suggestions interpretable, healthcare providers can combine 

their expertise with AI insights to improve workflow efficiency and patient outcomes [53]. 

 

Figure 2: Percentage distribution of healthcare domains studied in recent XAI research. 

Neurology (24%) and Cancer (16%) are the most common focus areas, followed by 

Cardiovascular (10%), COVID-19 (9%), Diabetes (8%), ICU outcomes (5%), and others. 

Even domains like obstetrics, surgery outcomes, and rare diseases (grouped as “Other”) 

appear in the XAI literature, indicating the wide scope of explainable AI applications in 

healthcare[6]. (Data source: Analysis of 89 XAI-in-healthcare publications, 2020–2024[6]) 

Figure 2 illustrates how XAI research is being applied across a variety of healthcare domains. 

It shows the distribution of recent XAI-in-healthcare studies by clinical area, demonstrating 

that explainability is a concern not just in one specialty but in many – from neurology and 

oncology to cardiology and beyond [6]. This broad applicability reinforces that the challenges 

and solutions we discuss in the next sections have wide relevance. 

3. KEY CHALLENGES IN EXPLAINABLE AI FOR HEALTHCARE 

Despite significant progress in XAI methods, several core challenges hinder the seamless 

integration of explainable AI into healthcare practice. These challenges stem from both 

technical limitations and human/organizational factors. We identify six major challenges 

[54]: 

(1) Cultivating appropriate trust in AI (and avoiding under- or over-reliance),  

(2) Achieving transparency with complex “black-box” models,  
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(3) Managing the trade-off between model complexity and interpretability,  

(4) Meeting ethical and regulatory requirements,  

(5) Ensuring data privacy, and  

(6) Integrating XAI systems into clinical workflows.  

These are not entirely independent – they interact in various ways – but we discuss them 

separately for clarity. Addressing each challenge is essential to move XAI in healthcare from 

research to real-world impact [55]. 

3.1 Building Trust without Overreliance 

Trust is frequently cited as both a goal and a challenge for AI in healthcare. Clinicians must 

have calibrated trust in an AI system – meaning they trust it when it’s correct and useful, but 

remain appropriately skeptical when it might be wrong. Achieving this balance is tricky. A 

lack of trust can lead to AI tools being ignored, whereas blind overreliance can be dangerous 

if clinicians defer to AI even when it contradicts their own judgment or has made an error 

[3][4]. 

To manage trust, XAI systems often convey not just an explanation but also some indication 

of confidence or uncertainty. This helps prevent over-trusting a wrong prediction. Moreover, 

training and user experience play a role: clinicians need to learn when and how to rely on the 

AI. Explanations can aid this learning by highlighting cases where the AI is on shaky ground. 

For example, an explanation that shows “Few similar cases in training data; model 

extrapolating” might alert a doctor to be extra cautious. Over time, as clinicians see the AI 

perform and explain itself, they develop a mental model of its reliability [56][57][58]. 

3.2 The Transparency Challenge (Opening the “Black Box”) 

Modern AI models, especially deep learning architectures, are often described as “black 

boxes” because their internal decision processes are not readily interpretable by humans. This 

opacity directly conflicts with the medical demand for transparency in decision-making. 

Clinicians and regulators alike want to know how an AI arrived at its conclusion, but with 

complex models it can be extremely difficult to provide a complete answer. This challenge is 

essentially at the heart of XAI: how to provide insight into black-box models [59]. 

Deep neural networks with millions of parameters or ensemble models with hundreds of 

decision trees do not lend themselves to simple interpretation. Most explainability methods in 

use (like feature importance rankings or saliency maps) provide partial transparency. They 

might highlight one aspect of the model’s reasoning (e.g., which features were most 

influential for one prediction), but they don’t reveal the full conditional logic or interactions 

inside the model. For example, a saliency map can show areas of an MRI that influenced a 

tumor detection model, but it won’t tell the clinician why those pixel patterns correspond to a 

tumor. The clinician must infer that from their own knowledge. Similarly, feature attribution 

might say a sepsis prediction was 80% influenced by blood pressure and lactate, but the 

interplay of various factors in the model’s latent space remains hidden [60]. 
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One straightforward approach to the transparency issue is to use inherently interpretable 

models when possible. For certain problems, simpler models (like logistic regression with a 

handful of features) might suffice and are directly transparent. Indeed, some experts argue 

that for high-stakes decisions, one should use the simplest effective model and avoid 

unnecessary complexity – “do not use a black box when a light grey box will do” [5]. In 

practice, however, it’s known that for many complex healthcare tasks (image analysis, high-

dimensional genomics, etc.), simpler models cannot achieve the accuracy of complex models. 

Clinicians also demand high accuracy; they may not accept an interpretable model that has 

significantly lower performance in diagnosing cancer compared to a black-box model. This 

creates a tension between the desire for transparency and the need for top-notch performance 

(as discussed in the next subsection) [61][62]. 

3.3 Balancing Model Complexity and Interpretability 

This challenge is closely tied to transparency but focuses on the tension between model 

complexity vs. interpretability and the associated trade-offs in performance. In many 

healthcare AI problems, the most accurate models are very complex (e.g., deep learning 

models with millions of parameters), while simpler, interpretable models might not achieve 

the same accuracy. This raises a fundamental question: How do we balance the need for high 

accuracy (to benefit patients and clinical outcomes) with the need for interpretability (to 

ensure understanding and trust) [63] ? 

In scenarios where complex models significantly outperform simpler ones, abandoning 

complexity altogether could mean sacrificing clinical efficacy. For example, in radiology, 

deep CNNs have proven extremely powerful in image interpretation, whereas linear models 

or shallow decision trees would perform poorly on raw pixel data. In such cases, outright 

choosing an interpretable model over a black box might not be viable if accuracy is 

paramount (e.g., missing cancers). On the other hand, if a simpler model can achieve nearly 

the same accuracy, many argue it should be favored for its transparency – an embodiment of 

“as simple as possible, but no simpler” [64]. 

One approach to this challenge is to develop methods that make complex models more 

interpretable (thus shifting the trade-off curve). For instance, attention mechanisms (as 

discussed, they add some interpretability to neural networks), or post-hoc distillation where a 

complex model’s behavior is approximated by a simpler model. Model distillation might 

create a simplified surrogate (say a decision tree or rule set) that mimics the complex model 

on the training data. If this surrogate is reasonably accurate, it can serve as an interpretable 

representation for users to understand general patterns in the complex model’s decisions. 

However, if the complex model is highly nonlinear, any single surrogate might be too 

approximate. Nonetheless, such distilled models can sometimes achieve surprisingly good 

fidelity and have been used to explain complex models like ensembles in medical prognosis 

tasks [65].  
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3.4 Ethical and Regulatory Challenges 

Healthcare is a highly regulated domain with strict ethical standards, and this poses unique 

challenges for AI explainability. Beyond the pragmatic issues of trust and transparency 

discussed above, there are specific ethical and legal expectations that AI systems must meet – 

many of which explicitly or implicitly require explainability [66]. 

One major impetus is the impending regulatory requirements for AI in healthcare. For 

instance, the European Union’s AI Act (expected to be enacted around 2024) will classify 

most medical AI systems as “high-risk” and impose requirements such as transparency, 

traceability, and human oversight [7]. In practice, this means developers will need to ensure 

their AI systems can produce understandable explanations of their outputs, among other 

safeguards, to get approval in the EU market. Likewise, the FDA in the United States has 

published guidelines (e.g., the Proposed Regulatory Framework for AI/ML-based Software as 

a Medical Device) that emphasize the importance of algorithm transparency and the ability to 

audit AI decision-making. Explainability is becoming part of the regulatory checklist that AI 

developers must satisfy to deploy in healthcare settings. 

There’s also an ethical mandate for explainability in medicine. Clinicians have professional 

and moral obligations to make decisions in the best interest of patients and to be able to 

justify those decisions. If a clinician relies on an AI, one could argue that the clinician should 

understand the basis of the AI’s recommendation to ensure it aligns with standard of care and 

is free of bias. The concept of “accountability” is crucial: if an AI system causes harm, how 

do we assign responsibility? Without explanations, it becomes hard to investigate errors or 

biases – was it a data issue, a model flaw, or misuse by a clinician? XAI helps by creating a 

record of why a certain recommendation was made, which is essential for post-hoc analysis of 

adverse events or discrepancies. From an ethical lens, some scholars argue there is a “right to 

an explanation” for patients when AI is involved in their care, analogous to how patients have 

a right to be informed about the reasoning behind medical decisions [67]. 

3.5 Data Privacy and Security 

Data privacy is a critical concern in healthcare, and it presents a unique challenge for AI 

explainability. Healthcare datasets are rich and often needed in large quantity to train robust 

AI models, but patient information is protected by laws and ethical norms. Two main issues 

arise: Training Data Privacy and Explanation Content Privacy [68]. 

Firstly, gathering and centralizing the huge datasets for training complex models can violate 

privacy or be blocked by regulations. Hospitals and clinics are often reluctant or legally 

unable to send patient data to a central location for AI development. This challenge has given 

rise to Federated Learning (FL) approaches, where models are trained in a distributed fashion 

(see Section 4.1). FL keeps data on-site and only shares model parameters or gradients, which 

is more privacy-friendly. Federated learning has been applied in healthcare scenarios like 

multi-hospital training of medical imaging models [8]. While FL addresses the training data 

privacy to a large extent, it introduces complexity in how to generate explanations. If the 

model is distributed, one must ensure that collecting information for an explanation (which 
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might involve querying the model or its components) does not inadvertently leak data from a 

particular site. For example, if an explanation method requires model gradients, those 

gradients might carry some information about local data. Researchers have begun exploring 

Privacy-Preserving XAI – ensuring that the act of explaining a prediction doesn’t 

compromise privacy. One study noted that aggregation of interpretability metrics across 

federated nodes diluted some local patterns, but still provided useful global insights, 

highlighting a trade-off between privacy and granularity of explanation [69][70]. 

Secondly, even if a model is trained, the explanation content itself could pose privacy risks. 

Consider example-based explanations: if an AI says “Patient X is similar to patient Y in the 

database who had outcome Z,” and if patient Y could be identified from that info, that’s a 

privacy breach. In a small pool of patients, even saying “this prediction was influenced by the 

patient’s rare genetic mutation” might effectively reveal that patient’s identity to someone 

with knowledge of who has that mutation. Thus, XAI methods must be careful not to disclose 

sensitive attributes that are not already known or necessary to explain the decision. 

Techniques such as using representative synthetic patient profiles or de-identified aggregate 

examples are ways to mitigate this risk [71]. 

3.6 Integration into Clinical Workflow 

Even the most well-designed explainable AI system can fail to have impact if it is not 

effectively integrated into the clinical workflow. Healthcare professionals operate under 

intense time pressure, using established processes and tools. Introducing a new AI with 

additional information (explanations) can either streamline decisions or, if poorly integrated, 

become a distraction or burden. Thus, usability and workflow fit are crucial challenges [72]. 

One aspect is user interface and accessibility. Explanations should be presented in a manner 

that clinicians can quickly interpret. If a physician has to log into a separate system or dig 

through multiple screens to find an AI explanation, they might ignore it altogether. Ideally, 

explainable AI outputs should be embedded in the systems clinicians already use – for 

example, the Electronic Health Record (EHR) interface, radiology viewer, or patient 

monitoring dashboard. A practical instance: some EHR vendors have begun integrating risk 

scores with one-click access to a brief explanation. If a primary care doctor sees a pop-up that 

a patient has a “high risk of hospitalization” and can hover to see “Key factors: uncontrolled 

diabetes, frequent ED visits,” that’s immediate and useful. On the other hand, if the doctor 

just sees a number or an alert without context, they may not know what to do with it or may 

mistrust it [73][74]. 

Another issue is time and cognitive load. Clinicians often have mere minutes with each 

patient or in reviewing each image. Explanations must therefore be concise. Long-winded or 

overly detailed explanations can be counterproductive. For instance, a model might analyze 

100 lab values – but telling the doctor all 100 contributed is not helpful. Instead, highlighting 

the top three contributors or an overall pattern is more effective. This is where careful design 

is needed: perhaps using graphical elements (like color coding high-impact features) or 

simple natural language summaries. There have been attempts to generate automatic brief 
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text explanations (like “The AI suspects sepsis mainly due to rising lactate and low blood 

pressure over 2 hours”). Such summaries can be read at a glance [75]. 

Alert fatigue is a serious concern in clinical environments. If AI systems produce too many 

alerts or explanations too frequently, they can become just another source of noise. It’s 

essential that explanatory alerts are delivered only when significant and actionable. For 

example, if an AI constantly explains trivial predictions or things the clinician already knows, 

they’ll tune it out. Integration strategy might involve setting thresholds for when an 

explanation is shown (e.g., only when the model’s confidence is low, or when the risk score 

crosses a high threshold). Additionally, personalizing the explanation interface to the user’s 

role can help. A nurse might want different information than a physician; a junior clinician 

might appreciate more detailed rationale, whereas an experienced specialist might only want 

the bottom-line [76]. 

4. EMERGING SOLUTIONS AND FUTURE DIRECTIONS 

Researchers are actively developing innovative techniques to make AI in healthcare more 

explainable and address the challenges discussed in Section 3. In this section, we highlight 

several key emerging solutions:  

(i) Federated Learning for privacy-preserving model training and explanation,  

(ii) Attention mechanisms and interpretable model architectures that provide built-in 

explanations,  

(iii) Counterfactual explanations that offer insight into how to change outcomes,  

(iv) Visualization and interactive tools to present explanations effectively to users, and  

(v) Hybrid models that combine data-driven learning with knowledge-based reasoning for 

better interpretability. Many of these approaches are complementary and can be combined in 

an AI system.  

Table 2 below maps these solutions to the challenges they primarily target. 

Table 2. Emerging XAI Solutions in Healthcare and the Challenges They Address 

Solution Description Addresses Challenges 

Federated 

Learning (FL) 

Distributed training 

of models across 

multiple institutions’ 

data without 

centralizing patient 

data. The global 

model is shared and 

can be used with 

explainability 

methods, while raw 

data remains private. 

Privacy (3.5): Preserves patient confidentiality by 

keeping data on-site during training[8]. 

Regulatory (3.4): Facilitates multi-center AI 

development in compliance with data protection 

laws. 

Workflow (3.6): Allows institutions to benefit from 

larger datasets and more robust models without 

altering local data governance or IT infrastructure, 

smoothing integration. 
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Attention 

Mechanisms & 

Self-

Interpretable 

Models 

Incorporating model 

components (e.g., 

attention layers in 

neural networks, 

prototype learning, 

sparse feature 

models) that provide 

interpretability as 

part of the model’s 

operation. Designing 

models that output 

human-

understandable 

intermediate features 

or explanations. 

Transparency (3.2): Makes deep models more 

transparent by design, highlighting which parts of 

input the model is focusing on[5]. 

Complexity vs Interpretability (3.3): Retains much 

of the accuracy of complex models while offering 

more interpretable reasoning (e.g., attention 

weights on clinical text, prototypical cases for 

comparison). 

Trust (3.1): By revealing model attention or logic 

in human-comprehensible terms, clinicians can 

better trust the model’s focus aligns with clinical 

cues. 

Counterfactual 

Explanations 

Generating “what-if” 

explanations that 

show how a model’s 

output would change 

if certain input 

features were 

different. These 

highlight minimal 

changes needed to 

alter a prediction 

(e.g., showing how a 

patient’s risk would 

drop if a particular 

risk factor were 

modified). 

User Understanding & Trust (3.1): Provides 

insight in a causal, action-oriented way, helping 

clinicians and patients understand crucial factors 

and potential interventions[12]. 

Transparency (3.2): Reveals aspects of the model’s 

decision boundary (what conditions would lead to a 

different outcome). 

Ethical Use (3.4): Aligns with informed decision-

making by illustrating reasons and possible changes 

– useful for patient communications and ethical 

justification of decisions. 

Visualization 

& Interactive 

Tools 

User interfaces and 

tools that integrate 

explanations into 

clinical workflows – 

including 

dashboards with 

visual annotations 

(graphs, heatmaps), 

interactive plots, or 

natural-language 

summaries. Users 

can explore or query 

the model’s 

reasoning (for 

example, adjust 

input values to see 

predicted outcome 

changes). 

Workflow Integration (3.6): Improves usability by 

presenting explanations in a concise, intuitive 

format within existing clinical software (EHRs, 

imaging viewers)[10]. 

Trust (3.1): Enhances trust by making the AI’s 

reasoning process visible and tangible (e.g., a 

highlighted tumor region on a scan, or a trend 

graph explaining a risk score)[3]. 

Transparency & Debugging (3.2): Allows users to 

interact with the model (simulate scenarios, drill 

down into features), facilitating deeper 

understanding and error analysis. 
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Hybrid Models 

(Knowledge + 

ML) 

Combining 

interpretable 

knowledge-based 

components (like 

rule-based systems 

or causal models) 

with machine 

learning models. 

Examples include: 

rule-augmented 

neural networks, 

models that follow 

clinical guidelines 

unless data suggests 

otherwise, or 

distilling a complex 

model into an 

interpretable 

surrogate. 

Interpretability vs Accuracy (3.3): Aims to achieve 

high accuracy of ML while maintaining 

interpretability via human-understandable logic[5]. 

The knowledge component can catch known 

patterns, while ML handles exceptions. 

Ethical/Regulatory (3.4): Knowledge-driven parts 

provide transparent reasoning (e.g., “alarm 

triggered because BP < 90 per clinical protocol”), 

satisfying demands for clear justification. 

Trust (3.1): Clinicians trust systems that 

incorporate medical knowledge and guidelines, and 

are more likely to accept AI recommendations that 

come with rule-based explanations or familiar 

reasoning steps. 

 

These emerging approaches are being actively researched and in some cases implemented in 

prototype or even commercial systems. In the rest of this section, we delve into each solution 

area, providing examples of how they work and citing recent studies that demonstrate their 

potential in healthcare. 

4.1 Federated Learning and Privacy-Preserving XAI 

Federated learning (FL) has emerged as a powerful approach to train AI models on 

distributed healthcare data while addressing privacy concerns. In a federated setup, multiple 

hospitals or institutions collaboratively train a shared model but each institution’s data 

remains on its local servers. Only model updates (like gradient information or trained 

weights) are exchanged and aggregated. This approach has been successfully demonstrated in 

scenarios such as multi-hospital medical imaging classification, digital health wearable data 

analysis, and outcome prediction models that use data from different clinics [8]. By design, 

FL tackles the privacy challenge (3.5) because patient data never leaves the source institution 

in identifiable form [77]. 

The good news for explainability is that once a federated model is trained, it can be used with 

most of the same XAI techniques as a centrally trained model. For example, if a federated 

model is deployed at Hospital A, clinicians at that hospital can input their patient’s data and 

get a prediction and an explanation (feature importance, etc.) just as they would with a model 

trained on centralized data. The explanation is based on a model that has learned from a much 

broader dataset (all hospitals participating), so it may actually be more reliable and 

comprehensive than a model trained only on Hospital A’s data [78]. 

One key consideration is ensuring that the explanation process itself does not leak 

information about other institutions’ data. Generally, if one is just explaining a single 
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patient’s prediction with respect to the final model, there’s no direct privacy issue – the 

model weights might contain some traces of other data, but nothing more than what the 

prediction already uses. However, if a user at Hospital A tried to query the model’s behavior 

on inputs outside the distribution of Hospital A (perhaps to infer something about Hospital 

B’s data patterns), that could be problematic. Techniques like secure aggregation and 

differential privacy are sometimes integrated into FL to ensure that even model updates don’t 

reveal individual data points [8]. When it comes to explanations, researchers are looking at 

whether certain explanation outputs (like gradients for a particular feature across all 

hospitals) could inadvertently expose differences that correlate with private info. So far, 

approaches to mitigate this include sharing only aggregated or non-sensitive explanation-

related information. For instance, Lopez-Ramos et al. (2024) mapped out publications on 

FL+XAI and noted that only a minority explicitly tackled how FL influences explanations; 

one insight was that overly granular interpretability metrics might reveal site-specific 

patterns, so focusing on global patterns (which is usually enough for interpretation) maintains 

privacy[79][80]. 

A practical application of federated learning with XAI is in medical imaging: suppose 10 

hospitals train a federated model for detecting a certain rare cancer on MRI scans. Each 

hospital gets the final model. A radiologist at Hospital X uses it on a patient’s scan and it says 

“high likelihood of tumor.” Using XAI (like Grad-CAM), the radiologist sees a heatmap 

highlighting a lesion area. This process didn’t require any other hospital’s data at inference or 

explanation time – the model was already trained. The radiologist benefits from a model 

effectively trained on data from 10 hospitals (maybe thousands of MRIs), which is much 

more robust, and still gets a clear explanation (highlighted region) just as they would if it 

were a model trained at their own site. From the patient’s perspective, their data stayed at 

Hospital X and only the model (which is not patient-specific data) was shared and returned, 

so privacy is intact [81]. 

4.2 Attention Mechanisms and Interpretable Model Design 

To tackle the transparency and interpretability challenges, a promising direction is to design 

AI models that are more self-explanatory. Instead of treating explainability as an 

afterthought, these approaches bake interpretability into the model architecture. Two key 

trends here are the use of attention mechanisms in deep learning models and the development 

of inherently interpretable or constrained models. 

Attention mechanisms: In neural networks, attention modules allow the model to weight 

different parts of the input when making a decision. For example, in a sequence model 

analyzing a patient’s history, an attention layer might assign higher weight to recent events 

(e.g., a spike in heart rate) and lower weight to older or less relevant events. The resulting 

attention weights can be visualized as a heat map over the timeline, showing which time 

points influenced the prediction of, say, a septic shock onset. Clinicians can look at that and 

often it makes intuitive sense (e.g., “the model paid most attention to the moment when blood 

pressure dropped and lactate rose,” which aligns with clinical reasoning for sepsis). In NLP 

applications like clinical text analysis, attention can highlight the words in a doctor’s note 
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that led an AI to flag possible diagnosis. For instance, if an AI reading an ER triage note 

predicts a high risk of stroke, the attention weights might highlight terms like “slurred 

speech” and “left arm weakness.” This provides an immediate clue to the clinician why the 

model thought of stroke, essentially surfacing which parts of the input the model considered 

important. 

Attention mechanisms have been successfully used in models like RETAIN (Reverse Time 

Attention Network) for healthcare, which provides interpretable attention on past visits for 

risk prediction, and in various clinical NLP models for cohort selection or outcome prediction 

where they highlight key symptoms in text [5]. A caveat: attention is not a perfect 

explanation – there’s an ongoing debate in ML about whether attention weights always 

correlate with feature importance. But in practice, they often improve interpretability and, 

importantly, allow some user control (e.g., a clinician might say: if the model isn’t attending 

to symptom X that I consider important, maybe the model is flawed or the documentation 

was incomplete) [82]. 

Beyond attention, there are model architectures aimed at interpretability by design. 

Examples include: 

• Generalized Additive Models with splines or neural components (GA^2M): These 

models learn a contribution function for each feature (or pair of features) that is human-

reviewable. One such model was deployed to predict pneumonia risk and provided doctors 

with graphs per feature like “risk vs age” which were monotonic and made clinical sense 

(they could see risk rises sharply after age 65, etc.). Interpretable models like this have been 

used in some healthcare settings where transparency is paramount, like predicting 

readmission risk using a few key features and showing those contributions [5]. 

• Prototype and case-based models: As mentioned, some deep models learn “prototypes” of 

each class. In medical imaging, a prototype might be a typical example of a certain lesion. 

When diagnosing a new image, the model can say “this image is classified as melanoma 

because it contains a patch that looks 90% similar to prototype #7 (a known melanoma 

image).” Sun et al. (2022) surveyed such approaches in medical image analysis where the 

internal representation is aligned with concepts or examples that humans can recognize[5]. 

This gives a very tangible explanation: actual similar past images. In text, a prototype could 

be an exemplar patient case description that the new case resembles. 

• Sparse or rule-based neural networks: Some research tries to make neural networks mimic 

decision trees or rule sets. One method is to enforce sparsity (so only a small number of 

neurons fire significantly for a given input), effectively creating a kind of rule: “if these 

specific pattern neurons activate, then outcome = X.” These can sometimes be interpreted 

post-hoc as rules. 

• Causal or disentangled representations: There’s a push to structure models so that internal 

features have meanings. For example, a model might be trained in a multi-task way to predict 

not just an outcome but also intermediate clinical concepts (e.g., “Is there lung opacity? 

Yes/No” as an auxiliary output when detecting pneumonia). By doing so, the model has to 
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explicitly compute that concept, which can be extracted as an explanation (and also validated 

against radiologist annotations). This is being seen in medical imaging: networks that output 

not only the predicted diagnosis but also a set of human-labelable features (like tumor size, 

location, presence of certain markers), thereby providing a conceptual basis for the decision. 

Interpretable models are particularly appealing to regulators (addressing challenge 3.4) 

because one can often formally verify certain properties (like monotonicity with risk factors, 

which ensures no bizarre inverse correlations). They also often generalize better in scenarios 

where data is limited, by incorporating domain knowledge (for instance, an interpretable 

model might enforce that some features only add positive risk, which could reduce 

overfitting). 

However, inherently interpretable models may require more effort to design for each 

application. They might not be as plug-and-play as a standard deep learning model. There is 

also sometimes a small loss in raw accuracy compared to an unconstrained model. But as 

discussed in the trade-off section, this loss may be offset by gains in human-AI team 

performance. 

4.3 Counterfactual Explanations and Causal Insights 

Counterfactual explanations have gained attention as an intuitive and useful form of 

explainability, particularly in domains like healthcare where one often asks "what could have 

been done differently?" A counterfactual explanation describes how an outcome would 

change if certain input factors were different. In other words, it answers questions of the 

form: “If X (input) had not been true (or had been true), what would the model prediction 

be?” This provides insight into the model’s decision-making in a way that is naturally 

aligned with human reasoning about cause and effect. 

For example, consider an AI system that predicts a high risk of hospital readmission for a 

patient. A counterfactual explanation might be: “If the patient had someone to assist at home 

(social support feature changed) and attended a follow-up within 7 days, the model’s 

predicted readmission risk would drop from 20% to 5%.” This kind of explanation is 

powerful: it not only tells which factors are important (lack of social support, no early follow-

up) but also indicates potential actions (arrange home support, schedule an early follow-up 

appointment) that could change the outcome. Such information is incredibly valuable to 

clinicians and care managers, aligning the AI’s insight with actionable steps [83]. 

Counterfactual explanations directly address trust and understanding  because they frame the 

model’s reasoning in terms of real-world changes and consequences. Clinicians often think in 

terms of counterfactuals: “Would this patient still have deteriorated if we had started 

antibiotics earlier?” If an AI can provide input on that (based on learned patterns), it engages 

with the clinician’s mode of thinking. Patients, too, may find counterfactuals easier to 

understand: “What can I change to reduce my risk?” is a common patient question. An AI-

driven explanation like “If you lose 10 kg, your predicted diabetes risk drops significantly” 

speaks directly to that. 
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From a technical perspective, generating counterfactual explanations can be challenging 

because the system must find a plausible input change that alters the outcome. There are 

methods like DiCE (Diverse Counterfactual Explanations) that use optimization to find small 

changes in input features that would flip the model’s prediction [12]. In healthcare, one must 

ensure these changes are feasible and realistic. Changing “age” by -10 years is not feasible, 

so age wouldn’t be a useful counterfactual suggestion. But changing “blood pressure” or 

“smoking status” is plausible (blood pressure via medication, smoking by cessation). 

Therefore, counterfactual generation methods often have constraints to suggest only 

actionable feature changes. In clinical settings, domain knowledge is used to filter 

counterfactuals (e.g., only suggest things like lab value improvements, medication adherence, 

lifestyle factors, or timely interventions, and not things like altering immutable traits or 

introducing impossible scenarios). 

A concrete research example: an intensive care predictive model for septic shock was 

enhanced with counterfactual explanation capability. For a given patient with a high 

predicted risk, it could output: “If fluid intake in the next hour were increased by 500 ml, the 

risk would decrease by X%.” This was derived from the model recognizing volume depletion 

as a risk factor, and the counterfactual is simulating the effect of an intervention (fluid bolus). 

This kind of explanation, if reliable, could actually assist clinicians in deciding interventions 

(though caution is needed to trust such suggestions, it’s an emerging area for decision 

support). 

Counterfactuals are also useful for auditing fairness: for instance, one can examine if the 

counterfactual changes differ systematically by protected attributes. If, say, for minority 

patients the model’s counterfactual often is “if you were of a different race, outcome 

changes,” that would expose a serious bias. Ideally, counterfactual reasons should revolve 

around clinical factors, not things like race or gender (unless medically relevant). In a fair 

model, changing race or ethnicity should not alter the prediction in the counterfactual sense – 

a point some studies check to ensure model fairness. 

4.4 Visualization and Interaction Tools for Explainability 

While sophisticated algorithms under the hood are crucial, the end utility of XAI in 

healthcare often comes down to how well the information is conveyed to the user – typically 

a clinician or sometimes a patient. This is where visualization and interactive tools play a 

pivotal role. A well-designed interface can make complex explanations immediately 

understandable, whereas a poor interface can render even a good explanation technique 

useless. 

Visual explanation tools present model insights in intuitive formats. For example, in medical 

imaging, the standard approach is to overlay heatmaps or contour highlights on the image to 

show regions the model found important. Many FDA-approved AI tools for radiology (for 

detection of nodules, fractures, etc.) provide such visual cues – these serve as a form of 

explanation, giving radiologists confidence about where the AI is “looking.” Similarly, in 

pathology AI, tools highlight cells or regions of interest. These visual explanations are part of 
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workflow: a pathologist might scan slide thumbnails with AI highlights to decide which 

region to examine first under the microscope. 

For non-image data, visualization might mean charts or graphs. For instance, a risk prediction 

system could show a bar chart of the top five contributing factors to a risk score (with lengths 

proportional to their contribution). If “elevated HbA1c” has a long bar for a diabetes 

complication risk, a clinician instantly knows glycemic control is a major issue for this 

patient. Some systems use waterfall plots or force plots (as in SHAP library outputs) to break 

down how various features push the prediction up or down from the baseline. While these 

require some training to interpret, once users learn them, they can parse the information 

quickly. A study found that presenting clinicians with a simple bar chart of feature 

importances for each prediction helped them identify when the model might be off (e.g., if 

the chart showed something nonsensical as top factor, they knew to be skeptical) and 

increased their acceptance when the chart matched their own reasoning[3]. 

Interactive dashboards take it a step further by allowing the user to query and manipulate the 

model’s reasoning process. An example is the “What-If Tool” (by Google PAIR) applied to a 

clinical dataset: a clinician can adjust input values via sliders and see how the model’s 

prediction changes. This not only provides counterfactual insights (as discussed) but also 

engages the user in exploring the model. It demystifies the model as something they can poke 

at and understand, rather than a one-way output generator. Interactive tools can also allow 

filtering: e.g., a doctor might filter similar past patients from the database to see outcomes 

(“Show me past cases similar to this one with high risk – what happened to them?”). If 

integrated with a hospital’s data, this becomes a kind of case-based explanation combined 

with model prediction. 

Natural language explanations are another front. There are prototypes where AI models 

generate a brief text explanation along with a prediction. For example, a cardiology AI might 

output: “Predicted risk: 85%. Explanation: patient’s age (76 years) and history of atrial 

fibrillation indicate high stroke risk according to learned patterns.” This reads almost like a 

doctor’s note or an excerpt from guidelines. Using language-generation models or templating, 

these explanations can be made quite fluent. Some recent works use large language models 

(LLMs) to “explain” the outputs of a separate prediction model – effectively translating the 

model’s logic into a narrative. Caution is needed because if not grounded, an LLM might 

hallucinate reasons. But when constrained by the model’s actual feature attributions, it can 

produce human-like rationales that are easier for clinicians to absorb quickly, as shown in 

some early studies on AI-aided report writing. 

From a workflow standpoint, integration means these visual or interactive explanation 

elements should appear in the software the clinician already uses. For instance, some hospital 

EHR systems have incorporated risk scores for things like sepsis (e.g., a sepsis early warning 

system). Initially, many just showed a numeric score or color code. Newer iterations are 

beginning to include a drop-down or pop-up that lists top factors contributing to that sepsis 

score (like “WBC high, HR high, hypotension present”). This is an improvement influenced 
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by user feedback and XAI research. It means the physician or nurse doesn’t have to guess 

why the alert fired – they see key evidence at a glance. 

4.5 Hybrid Models and Knowledge-Guided AI 

Hybrid modeling refers to AI systems that combine traditional, knowledge-based decision 

logic with modern machine learning. The idea is to get the best of both worlds: the 

interpretability and prior knowledge of expert systems or causal models, and the flexibility 

and performance of statistical learning. In healthcare, a vast amount of domain knowledge 

exists (clinical guidelines, pathophysiological principles, etc.), so ignoring it and purely 

relying on brute-force learning may not be optimal or necessary. Hybrid approaches can 

embed this knowledge to guide the model and provide human-understandable rationales. 

One simple form of hybrid model is a Rule-Based Scaffold around an ML model. For 

example, a hospital might use a set of if-then rules (derived from policy or experience) to 

handle very critical conditions – ensuring the AI doesn’t inadvertently override obvious 

clinical protocol. For instance, a hospital’s sepsis alert system might be hybrid: it follows a 

known screening rule (e.g., SIRS criteria and lactate level thresholds) to trigger an alert, but 

also incorporates an ML model that fine-tunes the risk prediction. The rule-based part 

guarantees that no high-risk case is missed according to standard criteria (and provides a clear 

rationale: “triggered due to low BP and high HR”), while the ML part improves specificity by 

analyzing patterns beyond the rule (with its own explanation). Clinicians thus get an alert that 

might say: “Sepsis Alert (Rule-based criteria met); ML model concurs with high risk due to 

worsening SOFA score.” This dual explanation (rule justification + model insight) is very 

transparent. 

5. CONCLUSION 

In conclusion, explainable AI has moved from a theoretical ideal to a practical necessity in 

healthcare AI systems. Through techniques like federated learning, attention-based models, 

counterfactual reasoning, visualization tools, and hybrid designs, we are beginning to unlock 

the “black boxes” of medical AI. These innovations enable AI systems to provide not just 

predictions, but also the reasoning behind them – a development that is essential for aligning 

AI with the values and workflows of medicine. The future of AI in healthcare will likely be 

one in which clinicians routinely interact with AI as a partner: querying its reasoning, getting 

clarifications, and combining its learned knowledge with their own expertise. Such a future 

promises AI tools that are transparent, trustworthy, and human-aligned, ultimately leading to 

better and more accountable patient care. 
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