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Abstract: A detailed MATLAB model of a residential PV system that is linked to the grid is shown in this 

article. A state-of-the-art ILPAO approach was used to fine-tune the model. It has a unique conversion topology 

with two steps. An optimized current controller, a scanning-enabled Deep Reinforcement Learning based 

Maximum Power Point Tracking algorithm (SEDRL-MPPT), and a high-gain voltage regulator are all part of 

the suggested control scheme that attempts to solve the issue of multiple local maxima in the PV power-voltage 

characteristics caused by partial shading.The simulations showed that the stabilized current controller 

improvements significantly improved the responsiveness and stability of the DC connection's transient voltage, 

and oscillations and overshoot are reduced by the boost voltage regulator gains while operating under dynamic 

irradiance circumstances. If the irradiation is not uniform, SEDRL-MPPT will maximize energy extraction. 

Comparative analysis against a baseline control configuration confirms that the proposed method’s effectiveness 

in improving system stability, dynamic performance, and power quality under realistic environmental 

disturbances. These findings validate the proposed approach as a robust solution for efficient and reliable 

residential PV-grid integration. 

Keywords: Grid-connected photovoltaic system, two-stage converter, improved lightning attachment procedure 

optimization, scanning-enabled Deep Reinforcement Learning based Maximum Power Point Tracking 

1 INTRODUCTION  

Rising energy use shows no signs of slowing down [1]. The quick development of renewable 

energy sources is necessary if we are to reduce our dependence on fossil fuels and our 

negative effects on the environment. The energy business is dominated by solar electricity 

since it is the world's second-most-used renewable energy source [2]. Concerns about 

greenhouse gas emissions have increased, while the price of photovoltaic (PV) systems has 

been steadily declining, leading to their widespread adoption, particularly in sunny locations. 

The production processes of photovoltaic (PV) modules, converter power electronics, and 

power point tracking (MPPT) To enhance the system throughput, optimisation of the 

controllers is necessary. When a DC/DC converter or inverter is used in conjunction with the 

MPPT algorithm, the MPP can reliably achieve the target, regardless of weather or solar 

radiation fluctuations. These review studies have given a thorough overview of all MPPT 

techniques used throughout the years [2, 3, 4]. They show how several groups may be created 

using attributes like memory, reaction speed, robustness, and sensor needs. Because of their 

accessibility and ease of use, traditional MPPT methods have enjoyed widespread adoption 

[5]. Aside from P&O, Incremental Conductance (IC) is the dominant method in this area.  
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Furthermore, Karami [6] included several tried-and-true methods, including the more 

conventional ones, such as OCC, OV, SC, and CC. When the sun's beams are constant, 

conventional approaches usually work, says Mohapatra [7]. Their energy conversion 

capability is diminished while working in partial shadow (PSC) since they are functioning at 

a local maximum power point (MPP). One big negative is this. With a large duty cycle step 

size, it can oscillate about the MPP; with a small one, the monitoring period is extended. In 

order to address the P&O approach's issues with sluggish tracking speed, poor convergence, 

and excessive oscillation, Ahmed [8] suggested allowing more freedom with scale of steps. 

With the MPP still some distance away, the controller has a lot of freedom to select a 

significant increment. Reducing oscillation at the MPP is why the step size is intentionally 

kept short. For further detail on these altered methods, see the Works Cited [2,3,4,5].  

Rezk provided MSPT control with a variety of soft computing methods, including neuro-

fuzzy (ANFIS) [11,12], ANN [10], and FLC [9]. Among the various evolutionary algorithms, 

the genetic algorithm (GA) finds use in cuckoo search (CS), many bee colony algorithms 

(BCAs), bat-inspired optimisation (BATs), bio-inspired memetic salp swarm algorithms 

(BATs), and many more. Jiang works as [19] claims that these methods, which use 

evolutionary algorithms and soft computing techniques, might address global nonlinear 

problems. One more option is to stick to partial structural constraints (PSCs) and yet use the 

global maximum partial probability (MPP). However, they have two major flaws. Inadequate 

convergence randomness can increase computing time, making it difficult for those without 

extensive knowledge of PV systems or access to expensive CPUs to find viable solutions. 

Particle swarm optimisation (PSO) is one prominent way for managing MPPT now, 

according to Rezk et al. [4]. Combining it with other algorithms can lead to novel approaches 

to MPPT control problems, as seen in Suryavanshi's PSO with P&O [21] and Garg's PSO 

with GA [22].  

There has been a rise in interest and application of reinforcement learning (RL) in recent 

years[23,24] because it can learn from past data involving interactions with the environment, 

as opposed to more conventional approaches that need sophisticated mathematical models of 

the control system. The optimal solution to the MPPT control issue may lie with RL, as it 

surpasses meta-heuristics in both domains (Kofinas et al., 25). Despite the paucity of prior 

efforts, Q-learning is now the recommended method. Using Q-learning and MPPT control, 

Wei built a wind energy system that can adjust its speed in [26]. For tidal energy conversion 

systems in particular, the authors have created a maximum power point tracking (MPPT) 

controller [27]. Research into solar energy conversion systems has also focused on maximum 

power point tracking (MPPT) management [25,28,29]. These systems have a small action and 

state space, which is a drawback. In contrast to the four states established by Hsu et al. [28] 

and Youssef [29], Kofinas et al. [25] established a state action space with four thousand state 

actions by linking eight hundred states with five actions. This indicates that systems with 

large state and action spaces have longer calculation durations. A new methodology was 

suggested by Pohan and Lai [30] that integrated P&O and Q-learning techniques. An ideal 

duty cycle may be found using a Q-learning controller by monitoring the temperature and 

radiation-split control zones. A smaller step size is achieved by adjusting these duty cycles 

using the P&O controller. Using a Q network and a Q table, respectively, Chou [31] has 
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developed two RL-based MPPT algorithms. However, PSCs are under-represented in those 

studies. Instead of using a single trained agent, techniques [32,33] use a multitude of agents 

to tackle the MPPT control issue. Researchers looked into the possibility of using transfer 

reinforcement learning algorithms to keep tabs on the world's biggest PowerPoint 

presentation [33]. We have developed a new approach for regulating PV systems in scenarios 

with partial shadowing using memetic reinforcement learning [32]. The main problem with 

these methods is that they have always only considered a limited, separate state and action 

space.  

One novel approach to machine learning that has recently gained traction is deep 

reinforcement learning (DRL). Optimal control is a problem that it could solve [34,35,36]. 

Atari and Go are among the games used in the study to prove that the DRL approach is 

effective [37]. A control problem with a large state space can be efficiently solved using 

DRL. One of the several advantages of using DRL in contexts is that it is applicable when the 

state space and the action space are same. Several fields have found real-world applications 

for DRL, including robots [35,38], computer vision [38], healthcare [40], smart grid [41], 

game design [37], and natural language processing [39]. In regards to the electrical grid, 

Zhang [42] provided a brief overview of DRL. Similarly, deep reinforcement learning is used 

to approximation functions in wind energy conversion systems for maximum power point 

tracking (MPPT) [43,44], although this time a neural network is utilised rather than a Q-value 

table. 

Maximum Power Point Tracking (MPPT) algorithms still aren't prepared for extreme partial 

shade conditions, no matter how far they come. The outcome is a power-voltage 

characteristic curve with several local maxima. Traditional MPPT methods and control 

systems are inadequate when attempting to ascertain the GMPP. The efficiency of energy 

extraction decreases because of this. Although the grid and the environment have high 

expectations for the performance of Deep Reinforcement Learning (DRL) algorithms, no one 

has yet investigated their use for maximum power point tracking (MPPT) regulation in 

residential grid-connected photovoltaic (PV) systems. 

This research highlights a significant limitation in the current state of MPPT controllers that 

are able to effectively adjust to changing operating circumstances, shading, and non-uniform 

irradiance, all while maintaining system stability and excellent power quality. As a result, this 

study offers a novel MPPT control strategy that combines an ILAPO-optimized control 

framework with DRL-enhanced algorithms to overcome these limitations. In residential PV 

energy conversion systems, Achieving optimal power harvesting, enhanced dynamic 

responsiveness, and dependable functioning in the face of real-world environmental 

disturbances is the goal. With an emphasis on maximum power point tracking (MPPT) under 

partial shadowing circumstances (PSC), this eight-part research intends to provide a 

comprehensive evaluation of grid-connected residential PV systems. The primary In the first 

part, "Introduction," we learn about the significance of the study and about the latest 

innovations in PV system optimisation. An extensive introduction to photovoltaic systems is 

given in Section 2, "Modelling of PV Module under PSC," which also delves into the 

mathematical workings of modules and the intricate consequences of uneven illumination.In 

Section 3.1, the basics of Deep Reinforcement Learning (DRL) are covered, and in Section 
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3.2, the ILAPO approach is introduced. Provided in Section 3: Background is the essential 

theoretical context. Section 4: Methodology details the main methodological contributions 

and how they were put into practice. It takes a look at the following sections: (4.1) The 

Definition of States, Actions, and Rewards in SEDRL-MPPT, (4.2) The ILAPO-based 

Controller Parameter Optimisation Using ITAE Objective, (4.3) The Integration and 

Workflow of the proposed system, and (4.4) The Simulation Setup for Grid-Connected 

Residential PV System with Two-Stage Conversion. In Section 5: Results, we show 

quantitative and qualitative results that result from the system behaviours. Section 7: 

Conclusion provides a concise summary of important results and future study directions, 

while Section 6: Discussion presents a critical analytical discourse on these empirical 

findings. In Section 8: References, all relevant intellectual contributions are cited with great 

care. 

2 MODELLING OF PV MODULE UNDER PSC 

2.1 Mathematical Model of PV Module 

By forming a p-n junction in a very thin layer of semiconductor materials, photovoltaic (PV) 

solar cells are able to transform the energy from the sun into electricity [30]. For PV system 

modelling, a trustworthy solar cell model is crucial [6]. A single-diode model is simpler and 

more practical, regardless of its accuracy. Based on a single diode, the electrical circuit used 

in the research is reminiscent to a solar cell [28]. For example, a perfect cell's output current 

can be [3,28,45]: 

”
ph d shK K K K= − − ”                                                                           (1) 

Where shK is the current through the parallel resistance, which is determined by 

s
sh

p

V KR
K

R

+
=                                                                                        (2) 

Where 
pR and should be set to its maximum value to represent the parallel resistance, along 

with sR represents the series resistance that results from all the impediments that the current 

must traverse, and it must be maintained at a minimum. A flow of electricity generated by 

light, or 
phK , is also directly related to how bright the light is  

( )ph sc K c r

STC

Q
K K C T T

Q
= + −                                                              (3) 

Where KC thinks about the temperature coefficient of the cell's short-circuit current and scK

this is the current across a short circuit when tested under STC (T = 25, = 1000 W/m2). Q  is 

the relative irradiation, rT is the temperature used as a benchmark, and cT represents the 

temperature at which the cell is actively working. A current via a diode, or dK , is provided by 
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0 exp 1d
d

c

eV
K K

AqT

  
= −  

  
                                                               (4) 

Where A  is the diode's ideal factor, q  = 1.38 × 10−23 is Boltzmann's constant, and e  = 1.6 

× 10−19 is the electronic charge.  dV  is the voltage of the corresponding diode, and 0K  is the 

diode's reverse saturation current.  They are determined by 

d sV V KR= +                                                                                     (5) 

Typically, PV cells are connected in series to form PV modules. The current through a 

photovoltaic module may be easily calculated using a simple mathematical model that takes 

into account both temperature and sun irradiation: 

“
( )

exp 1
s

pv ph O

c s

e V KR
K K K

AqT N

 + 
= − −  

   
”                                                       (6) 

Where the number of series resistance cells is represented by sN . 

Environmental conditions have a significant impact on a PV module's properties, as the 

equation above illustrates.  The ACS-335-M PV module from American Choice Solar is 

utilized in this research to simulate a photovoltaic system.  Table 1 provides an illustration of 

its specifications.   

Data Sheet for the ACS-335-M Solar Photovoltaic Module by American Choice Solar 

“Specifications  Value 

Maximum Power (W) 334.905 

Voltage at MPP (V) 41.5 

Current at MPP (A) 8.07 

Open circuit voltage, Voc (V) 49.9 

Short circuit current, Isc (A) 9 

Temperature coefficient of Voc (%/ ◦C) −0.36 

Temperature coefficient of Isc (%/ ◦C) 0.09” 

2.2 Partial Shading System Effect 

Arrays of photovoltaic (PV) solar modules connected in series or parallel provide the 

necessary voltage and current. When two modules are linked in series under PSC, the PV 

curve will display two peaks. Solar panels are no differen; a series connection of five can 

only generate five peaks. The methods outlined here are applicable to many different types of 

PV systems. Putting three photovoltaic modules in sequence allows you to mimic the 

variation between a global and a local maximum power point, which can simplify things. The 

illustration shows how to prevent PV modules from overheating under partial shadow 
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circumstances (PSCs) by using a blocking diode and bypass diodes [2,3]. When many things 

cast shadows on multiple PV modules—be it buildings, poles, or even bird droppings—this 

phenomenon is known as partial shading. Rather of being an asset, it becomes a burden in 

this situation. As time passes, hot spot phenomena can cause shaded PV modules to suffer 

damage [14,46,47]. A parallel connection of a bypass diode prevents the PV system and its 

modules from overheating. The bypass diode has the ability to reverse bias if it is constantly 

exposed to direct sunlight. If a photovoltaic module uses a diode rather than the module itself 

to transmit sunlight, a forward bias will result. The power curve, on the other hand, will show 

several peaks with local and global maxima when a partial shadow and bypass diode are 

present. You may maximise the efficiency of your PV array and potentially reduce power 

loss by 70% by operating the system when it is operating at its peak efficiency [2]. 

2.3 PV System Introduction 

Changes in temperature and solar energy may greatly affect PV solar cells due to their 

nonlinear properties. Based on the data, we can see that temperature has a negative 

correlation with PV output power, and that the two variables are directly proportional.  

Results from previous research show that knowing the optimal terminal voltage of the array is 

crucial for PV panels to operate at their maximum power point (MPP) under specific weather 

conditions [47, 48]. A constant MPP can only be achieved with efficient MPPT control [7]. 

Additionally, PSCs cause a PV panel's P-V curve to have several peaks. An intelligent MPPT 

controller may be able to resolve the issues with conventional MPPT methods.  

The DC-DC converter is a key part of the MPPT method. By adjusting the pulse width 

modulation (PWM) signal's duty cycle D, a DC-DC converter may regulate the voltage 

output of a photovoltaic array. By analysing this signal, maximum power point tracking 

(MPPT) controllers determine the optimal voltage for energy generation. Visit to learn about 

the operating duration of a DC-DC boost converter [30]. 

1 in

out

V
D

V
= −                                                                             (7) 

3 BACKGROUND 

3.1 Basic Concept of DRL 

A more advanced kind of reinforcement learning (RL), DRL is briefly described here. One 

kind of unsupervised machine learning, reactive learning (RL) relies on the idea that agents 

are neutral when faced with outside stimuli [49]. The use of reinforcement learning to address 

issues with sequential decision-making is gaining popularity among computer science 

researchers [24,36,50]. By repeatedly trying different strategies in a particular situation, 

reinforcement learning (RL) can find the policies or behavioural approaches that maximise 

the total projected discounted rewards [51]. The standard components of an RL model are an 

agent, a setting, tasks, states, and incentives [23]. The agent then goes on to activate the RL 

algorithm, making use of its environment as a stand-in for the object it is interacting with. In 

response to changes in its environment, the agent applies its knowledge to the new state. 

Following that, it incorporates two future states along with environmental incentives. Once 
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the agent receives the reward, it can evaluate its most recent activity. An episode ends when 

the setting changes, and a new one begins when it is prepared. This loop will keep going until 

all of the conditions are met [23].  

To determine the optimal action, some approaches apply the value function 𝑌𝜌(𝑦)Vπ(s), 

which represents the probability of the agent reaching a certain state [51]. It is expected that 

this will happen if government policy is followed. How the action-value function works 

Equation 𝑄𝜎(𝑦,𝑎)Qπ(s,a), which forms the basis for several additional processes, denotes the 

anticipated following the policy 𝑀, returning to the current state of doing this activity. The 

𝑌𝜎(𝑦)Vπ(s) and 𝑄𝜎(,𝑎)Qπ(s,a) functions may be generated using the following formula 

[23,42,51]: 

 

“ ( ) 1

0

k

t t t t k t

k

V s E R s s E r s s 


+ +

=

 
=  =  = =   

 
                                                        (8) 

( ) 1

0

, , ,k

t t t t t t k t t

k

Q s a E R s s a a E r s s a a 


+ +

=

 
=  = =  = = =   

 
                        (9)” 

An off-policy, model-free RL approach known as Q-Learning has been gaining traction 

across several sectors. It is possible to repeatedly show the 𝑄𝜌(𝑦,𝑎) function using the 

Bellman equation in Q-Learning [23,51]: 

( ) ( )1 1 1, , ,t t t t t t tQ s a E r Q s a s a + + +
 = +                                                              (10) 

An optimal strategy 𝜋∗ achieves the largest cumulative reward over an extended period of 

time. Currently, [23] provides the finest value function and action-value function. 

“ ( )* arg maxV s


 =                                                                                    (11) 

( ) ( )* maxV s V s


=                                                                                     (12) 

( ) ( )* , max ,Q s a Q s a


=                                                                            (13)” 

Among the many current AI hotspots, deep reinforcement learning (DRL) stands out. 

Autonomous learning is made possible by engaging with a particular environment. A number 

of domains have profited substantially from DRL's use of RL and DL. Computer games, 

artificial intelligence, natural language processing, and company and financial management 

are all part of this category. Using look-up tables to store and index data is a big problem 

with reinforcement learning. For practical issues involving expansive state-and-action areas, 

this could prove troublesome. So, value functions or policy functions can be approximated by 

neural networks [37,51]. So, it is possible to assign Q values to states or state-action pairings 

using neural networks.  

The two types of solution strategies shown in Figure 1 are model-based and model-free. 

Learnt or known models are used in model-based DRL. One major advantage of the model-

based approach is how few instances it need for learning. However, the computational 
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complexity increases significantly when the model is unexpectedly challenging to train. 

Dealing with RL that does not rely on models, nevertheless, will yield better results. It works 

with minimal computing power and doesn't need an accurate description of the environment. 

A model-free decision-relationship mapping that is based on values or policies is available. 

The objective of value-based approaches is iteratively enhance the value function until 

convergence is achieved. Presented here are the objective function and updating mechanism 

[36,42]: 

“ ( ) ( ) ( )( )
2

1 1 1max , ,t t t t t
a

J E r Q s a Q s a   + + +

 
= + −  

                             (14) 

( ) ( )( )( ) ( )1 1 1 1max , , ,t t t t t t t t t
a

r Q s a Q s a Q s a      + + + += + + −                                (15)” 

where 𝛼 is learning rate, and 𝜃 is the weights of the neural network. 

 

Figure 1. Introduction of deep reinforcement learning (DRL) algorithms. 

Algorithms based on policies optimise the policy at each time step and use the current policy 

to determine the value maximise interest until policy convergence is reached. First things 

first, as you can see in the image below, we update the weight matrix and get the objective 

function's gradient [36,42]: 

“ ( ) ( ) ( )
0 0

log ,
T T

t t t t

t t

J E a s r s a   
= =

 
 =  

 
                                                       (16)” 
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( )J    +   

3.2 Improved Lightning Attachment Procedure Optimization (ILAPO) 

As an acronym for "Improved Lightning Attachment Procedure Optimisation," ILAPO 

describes a particular algorithm. The occurrence of lightning and thunder (Nematollahi et 

al.)laid the groundwork for it. A new optimisation method called LAPO is based on the idea 

that clouds may store a great deal of electrical energy, just like lightning. Lightning is 

produced by an accumulation of electrical charges on the form cloud, which leads to a rise in 

electrical power and the occurrence of lightning strikes at various locations (Refai et al.).  

The phenomena of LAPO optimization is comprised of many phases. 

Clouds are transferred to the earth in the first stage. The next step is to make a flash. 

Composing lightning and thunder is the final step. Steps in the LAPO optimisation process 

include starting a population, fading branches, moving leaders up and down, and improving 

execution(EL Sayed et al.). One possible outcome of the initialisation of the population is the 

occurrence of discharges; this is because each dot acts as a member of the population. The 

Downward Motion leader uses a random selection procedure to choose the members to serve 

as test dots. After the Leader of Downward Motion has created an ideal and substandard dot, 

the procedure known as the Leader of Upward Motion is applied. The branch's fading may be 

likened to coordinating lightning by looking at a dot made by a leader travelling upwards. 

Every production instance will undergo this process again(Kamel and Youssef), (Tan et al.).  

Figure 2 illustrates the flowchart that delineates the LAPO optimization approach. 

To increase the searching capabilities and prevent the traditional LAPO from stagnating, the 

improved lightning attachment process optimisation (ILAPO) is suggested. LAPO is an 

effective method for solving a wide range of optimisation problems. But it's still similar to 

other meta-algorithms. In certain cases, it could experience local optima and stagnation. 

Improving the regular LAPO's exploration and exploitation capabilities is what the proposed 

ILAPO is all about (Ebeed et al.). By randomly moving the test locations using Levy Flight, 

the following changes are made to the exploration component of the first iteration process 

(Viswanathan et al.): 

𝑋𝑠_𝑛𝑒𝑤
𝑖 = 𝑋𝑠

𝑖+ ∝ ⊕ 𝐿𝑒𝑣𝑦(𝛽)        (17) 

where ∝ is a step size parameter that may be derived as follows: 

𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝛽)~0.01
𝑢

|𝑣|1 𝛽⁄ (𝑋𝑠
𝑖 − 𝑋𝑏𝑒𝑠𝑡)      (18) 

where u and v can be found from (3) and (4) as follow 

𝑢~𝑁(0, 𝜙𝑢
2), 𝑣~𝑁(0, 𝜙𝑣

2)        (19) 

𝜙𝑢 = [
𝛤(1+𝛽)×sin(𝜋×𝛽 2⁄ )

𝛤[(1+𝛽) 2⁄ ]×𝛽
]

1 𝛽⁄

, 𝜙𝑣 = 1      (20) 

where 𝛤represents the standard beta function. Points surrounding the best solution are 

determined using a logarithmic spiral function are updated in a spiral pass during the last 

iteration of the procedure to enhance the exploitation phase: 
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𝑋𝑠_𝑛𝑒𝑤
𝑖 = |𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑠

𝑖|𝑒𝑏𝑡cos(2𝜋𝑡) + 𝑋𝑏𝑒𝑠𝑡      (21) 

where the logarithmic spiral form is defined by a constant b. 

 

Figure 2 Flowchart of LAPO Optimization 

4 METHODOLOGY 

This study builds a residential PV system's adaptive MPPT controller using Deep 

Reinforcement Learning (DRL). Unlike static operating points or pre-defined mathematical 

models used in maximum power point tracking (MPPT), dynamic response learning (DRL) 
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allows the controller to develop an optimal control strategy through never-ending dialogue 

with nature. The DRL agent monitors the system, adjusts the control input, and receives 

feedback on incentives to improve its policy. Our data-driven method outperforms state-of-

the-art MPPT algorithms in partially shadowed situations due to the several local maxima on 

the PV power-voltage curve. 

4.1 Definition of States, Actions, and Rewards in SEDRL-MPPT 

The suggested control strategy revolves around the SEDRL-MPPT algorithm, which 

combines a scanning mechanism with a DRL agent to provide reliable tracking of the peak 

power point on a global scale. 

States (S): The state vector is constructed from real-time measurable electrical parameters 

that reflect the system’s operating condition and environment. Specifically: 

• PV array voltage V 

• PV array currents I 

• Voltage variation ΔV=V(t)−V(t−1) 

• Current variation ΔI=I(t)−I(t−1) 

These four parameters form a comprehensive state representation that allows the DRL agent 

to discern trends in power output and detect changes in irradiance or shading patterns. 

Actions (A):The agent may adjust the duty cycle of the DC-DC converter with respect to the 

PV array. This is the area where they may take action. Steps consist of: 

• A precise increment in the duty cycle 

• Limiting the duty cycle to a predetermined value 

• Maintaining the current duty cycle 

This discrete action set enables the agent to explore the power-voltage curve systematically 

and climb towards the GMPP while avoiding oscillations near local maxima. 

Scan Mechanism: 

A periodic scanning mechanism is embedded into the DRL framework. This mechanism 

initiates a low-frequency voltage sweep across a predefined voltage window at specific 

intervals or under poor reward gradients. The scan temporarily overrides DRL decisions to 

sample a broader voltage range, thereby: 

• Detecting global peaks missed by DRL exploration 

• Reinitializing the DRL state space if stuck near a local maximum 

• Revalidating the current MPPT point under dynamically changing irradiance or 

shading conditions 

This scanning process serves as a reset-check tool, improving robustness in complex real-

world PV environments where conventional learning alone may prematurely converge. 

Rewards (R): The reward function is designed to directly encourage power maximization. It 

is computed as the difference in PV output power between consecutive time steps: 
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𝑅𝑡 = 𝑃(𝑡) − 𝑃(𝑡 − 1)  

where P(t)=V(t)×I(t) 

Motivated by positive reinforcement, the agent shifts the duty cycle to maximise power 

production, whereas negative rewards discourage movements away from the GMPP. 

Additionally, the scanning component allows periodic sweeping of the voltage range to 

prevent the agent from settling in suboptimal local maxima caused by partial shading. 

4.2 ILAPO-based Controller Parameter Optimization Using ITAE Objective 

Integrating two critical control loops, the suggested system stabilisesunity power factor 

functioning is guaranteed by the DC link voltage, and reduces harmonic distortions: a high-

gain voltage regulator and current regulators.  

 

To achieve peak performance, voltage and current controllers are fine-tuned using the 

ILABO algorithm's proportional (Kp) and integral (Ki) improvements. ILAPO is a 

metaheuristic optimisation method that takes its cues from nature. It finds global optima in 

complicated search spaces by balancing exploration and exploitation, just like lightning. 

Objective Function (ITAE):Reducing the Integral Time Absolute Error (ITAE) is the main 

goal of tuning: 

𝐼𝑇𝐴𝐸 =  ∫ 𝑡 × |𝑒(𝑡)|𝑑𝑡
𝑇

0

 

The runtime of a simulation is represented by TTT, and the difference between the reference 

and measured variables is the error signal, e(t). 

ITAE is chosen because it penalizes errors that persist for longer durations more heavily, 

promoting rapid error correction and improving transient response quality. 

Optimization Process: ILAPO iteratively adjusts controller gains to minimize ITAE by 

evaluating the system's adaptability to sudden shifts in input or variations in illumination. The 

result is a set of optimized parameters that reduce overshoot, minimize oscillations, and 

enhance voltage stability under transient conditions. 

4.3 Integration and Workflow 

The overall control architecture integrates the SEDRL-MPPT algorithm and ILAPO-tuned 

controllers within a two-stage converter topology: 

1. The DRL agent monitors PV voltage and current to adjust the DC-DC converter's 

duty cycle, with incentives for different power levels.  

2. The inverter output currents and DC link voltage are regulated using gains that have 

been optimised for ILAPO in order to maintain suitable limits. 

3. The scanning-enabled mechanism in SEDRL periodically explores the voltage range 

to detect and correct deviations from the GMPP, especially under rapidly changing 

shading conditions. 
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4. This cooperative control strategy ensures maximum energy extraction with high 

dynamic stability and superior power quality, validated through extensive 

MATLAB/Simulink simulations under realistic environmental disturbances. 

4.4 Simulation Setup for Grid-Connected Residential PV System with Two-Stage 

Conversion 

In a system with 16 GB of RAM and 500 GB of ROM and an inter5 core CPU, the simulation 

of the system being considered (Fig.3) is executed using MATLAB 2021A. The system is 

designed to mimic a residential rooftop solar installation with its five interconnected blocks 

of photovoltaic arrays. In the normal course of the test, which involves Solar panels that are 

25 °C hot and have a 1000 watt power output may produce 2400 watts of electricity when 

they are exposed to sunshine W/m². 

 

 

Figure3. Simulation setup 

In order to prepare the energy for usage in homes and grid synchronisation, it is sent via a 

two-stage power conversion architecture from the PV array. The PV string's variable DC 

voltage is first converted to a regulated intermediate DC bus using a unidirectional boost 

voltage-to-current converter. It is modelled after a Pulse Width Modulation (PWM) signal 

operating at 20 kHz." which is based on the Switching Function approach. The simulation 

dynamics are simplified and a discrete time step of 5 microseconds is enabled by employing 

PWM pulse averaging. Maintaining dynamic responsiveness and high-frequency harmonics 

with little computing burden is where this arrangement really shines. 

The regulated direct current (DC) power is transformed into load-and grid-friendly 

alternating current (AC) via a full-bridge single-phase inverter, the second component. Just 

like the last inverter, this one uses the Switching Function approach to continually maintain 

accurate voltage waveforms and is PWM-controlled at 20 kHz. To achieve optimal energy 

management, the system employs a two-tiered control technique. To keep the boost converter 

running at peak efficiency, the DRL-Maximum Power Point Tracking (MPPT) controller is 

continuously modifying the duty cycle. Scanning is required because the P-V curve has many 

local maxima caused by partial shadowing. The controller starts a low-frequency duty cycle 
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sweep to find the GMPP and improve overall energy collection when working in 

surroundings with different light levels. Even when the system is powering out to the grid at 

unity power factor, the inverter controller perfectly maintains a 400 V DC link voltage. This 

controller's architecture features an exterior loop for controlling voltage and an inside loop 

for controlling current. Using a reference setpoint and the observed DC link voltage, we may 

produce the voltage reference (V_ref) in the outer loop. 

In order to prevent reactive power exchange and impose active power injection, the inner 

loop quickly monitors the inverter's output currents and brings them into alignment with the 

grid voltage. This dual-loop setup allows for fast transient response and dependable operation 

under varying generation and load conditions. The realistic grid depiction for the AC side of 

the system includes a 14.4 kVrms ideal utility source and a transformer positioned on a pole. 

The secondary winding of the transformer mimics the standard design for home power 

distribution, disseminating 240 V in a center-tapped layout with the neutral point grounded. 

The inverter, a 2500 W home load, and an outside neighbourhood load are all connected to 

the 240 V line. Researchers studying PV system-grid power sharing can take this setup into 

consideration by accounting for the effects of voltage drop and real impedance. A sufficiently 

enough time horizon allows the simulation to capture occurrences in real-time. Within 0.25 

seconds, as soon as all PV modules get consistent irradiation of 1000 W/m³, the system 

stabilises at its rated output of 2400 W. For reasons related to the inherent instability of 

single-phase power extraction, The inverter keeps the DC bus voltage at 400 V and adds a 

little ripple of 120 Hz. Since there appears to be very little power being used from the grid, it 

is safe to presume that the PV generation covers the whole local demand. As a result of 

decreased irradiance on certain PV modules, a partial shadow situation is created at 0.3 

seconds. With a PV voltage of 225 V and a duty cycle of 0.44, the MPPT algorithm has 

achieved a local maximum power point in 0.35 seconds, even though it is only producing 920 

W of electricity. The MPPT controller starts scanning the whole P-V function when the timer 

reaches 0.4 seconds. With a PV voltage of 168 V and a duty cycle of 0.58, the system is able 

to harvest 1364 W in under 0.7 seconds. As can be seen on the utility meter, the remaining 

1136 W required to meet the 2500 W domestic demand is provided by the grid. Incorporating 

high-fidelity converter models, this simulation provides a comprehensive framework for 

assessing the effectiveness of residential PV systems, complex control algorithms, and ever-

changing environmental variables. Solar photovoltaic (PV) array layout, converter 

management, and grid-connected power electronics system design may all benefit from the 

data collected by this configuration. 
 

Parameter Value / Description 

PV Strings Number of Series PV 

Blocks 

6 

 
Total Rated Power 2400 W 

 
Irradiance (Initial) 1000 W/m² 

 
Operating Temperature 25 °C (fixed) 
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Model Type Robust Discrete Model 

Boost Converter Converter Type Unidirectional DC-DC Boost 
 

Switching Frequency 20 kHz 
 

Control Technique PWM (via MPPT) 
 

Simulation Method Switching Function with PWM Pulse 

Averaging 
 

Simulation Sample Time 5 μs 
 

DC Link Voltage 

(Regulated) 

400 V 

 
Duty Cycle (Initial under 

full irradiance) 

~0.33 

 
Duty Cycle (LMPP under 

shading) 

0.44 

 
Duty Cycle (GMPP after 

scan) 

0.58 

MPPT 

Controller 

Algorithm Perturb & Observe (P&O) with Scanning 

Capability 
 

Scan Duration 0.25 s 
 

Power at LMPP (Partial 

Shading) 

920 W 

 
Power at GMPP (After 

Scan) 

1364 W 

Inverter (DC-

AC) 

Type Single-Phase Full-Bridge Converter 

 
Control Strategy Outer Voltage Loop + Inner Current Loop 

 
Output Voltage 240 Vrms 

 
Output Frequency 50/60 Hz (as per grid standard) 

 
Output Power Factor Unity (1.0) 

 
Switching Frequency 20 kHz 

 
Simulation Method Switching Function with PWM Pulse 

Averaging 

Grid and load Residential Load 2500 W 
 

Grid Voltage (Primary Side) 14.4 kVrms 
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Transformer Secondary 

Voltage 

240 V (Center-Tapped) 

 
Neutral Connection Grounded 

 
Grid Power Draw @ 0.25 s ≈ 0 W (PV fully supplies load) 

 
Grid Power Draw @ 0.7 s 

(post-GMPP) 

≈ 1136 W (Load - PV = 2500 - 1364) 

Simulation 

Timeline 

Total Simulation Time ≥ 0.75 s 

 
Sample Time 5 μs 

 
Key Events 0.25 s (Steady-State), 0.3 s (Shading), 0.4 s 

(Scan), 0.7 s (GMPP) 

 

5 RESULTS: 

Table 1 Parameters for proposed and the baseline 

Proposed 

Voltage 

Regulator 

Proportional 

gain 
10 

Integral gain 1000 

Current 

regulators 

Proportional 

gain 
0.3 

Integral gain 20 

Baseline 

Voltage 

Regulator 

Proportional 

gain 
2 

Integral gain 200 

Current 

regulators 

Proportional 

gain 
0.5 

Integral gain 30 

 

The suggested control system uses a more aggressive voltage regulator design with a 

proportional gain of 10 and an integral gain of 1000, as shown in Table 2 of the baseline and 

proposed control schemes, respectively, significantly higher than the baseline values of 2 and 

200, respectively. This increase enhances the voltage regulator’s responsiveness and steady-

state accuracy, enabling faster correction of voltage deviations and improved DC link 

stability under dynamic conditions. Conversely, the proposed current regulators use a slightly 

lower proportional gain of 0.3 and integral gain of 20 compared to the baseline’s 0.5 and 30, 

suggesting a more conservative current control approach. This adjustment likely reduces 
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high-frequency oscillations and improves system stability by mitigating overshoot in current 

regulation, thus complementing the robust voltage control to achieve a balanced and stable 

inverter performance. Overall, these parameter choices reflect a design optimized for rapid 

voltage stabilization while maintaining smooth current regulation within the inverter control 

loops. 

 

Figure 4 Proposed 

 

Figure 5 Base 

 

You can see the baseline setup in Figure 4 and the proposed arrangement in Figure 5. The 

proposed architecture demonstrates enhanced dynamic performance and MPPT adaptability 

under NUI conditions. In all scenarios, an irradiance disturbance that lasts between 0.4 and 

1.3 seconds causes reductions in panel 2, panel 3, and panel 6 can handle power densities 

ranging from 1000 W/m² to 800 W/m², 400 W/m², and 200 W/m², respectively. However, by 

focussing on the real reaction of power generation, the suggested method provides a more 

practical evaluation of the system's efficiency. Practical difficulties arise because the basic 

case does not depict the dynamics of the output from the panels in terms of performance 

degradation or recovery, even when the irradiance levels are stated. Panels 2, 3, 5, and 6 

temporarily lose power output by 60-80% depending on the intensity of the shadow in the 

proposed design, but fast MPPT control allows them to return about 98% of their pre-

disturbance power levels in just 1.4 seconds. Plus, Panels 1 and 4 keep producing about 

250 W of power, which indicates that they are running smoothly and efficiently. The 

asynchronous recovery in the proposed situation is more accurate representation of real-world 

inverter and string-level response mismatches, and the fast return to optimal output confirms 

that the MPPT efficiently converges on goes around local maxima and instead focusses on 

the GMPP. Improved performance in partly shaded environments proves that the suggested 

approach outperforms the baseline model in all respects, including tracking precision, 

recovery time, and total energy consumption efficiency. 
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Figure 6RMS of voltage and current for the Proposed model 

 

Figure 7RMS of voltage and current for the Base model 

The Figure 6 and 7 are both the proposed and baseline RMS of voltage and current plots 

where in comparison to the base configuration, the proposed system exhibits a more robust 

and resilient transient response in both RMS voltage and current profiles under dynamic 

partial shading conditions, demonstrating superior control strategy and system stability. 

While the base system maintains a relatively steady Vrms in the range of 238–238.2 V, its 

response to irradiance disturbances results in subtle but sustained oscillations and minor 

voltage dips at 0.4 s and 1.2 s, suggesting a delayed or less aggressive voltage regulation. In 

contrast, the proposed system, despite encountering a more pronounced voltage dip around 

0.3–0.8 s down to approximately 237.5 V, rapidly stabilizes and recovers to a nominal 

voltage of 238 V by 1.3 s, illustrating a faster recovery time and stronger voltage loop 

regulation. More significantly, the Irms waveform in the base system shows a dramatic initial 

spike up to 30 A followed by persistent oscillations and a delayed stabilization around 10–

12 A post 1.3 s, indicating possible overcurrent stress and slower MPPT convergence. The 

proposed system, however, operates within a more controlled current range declining from 

20 A to nearly 0 A during the shading event and recovering smoothly to approximately 10 A 

without excessive overshoot highlighting improved power balancing and MPPT 

responsiveness. This indicates that the proposed system's control scheme not only ensures 

better voltage quality but also delivers faster and more stable current adaptation in response 

to transient irradiance conditions. These enhanced voltage and current regulation 
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characteristics confirm the suggested method's effectiveness in relation to the dynamic grid 

interface, inverter resilience, and overall system robustness under partial shading scenarios. 

 
Figure 8 active power and reactive power of proposed model 

 
Figure 9active power and reactive power of base model 
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Figure 8 displays the baseline data as well as the recommended active and reactive power 

charts and 9, respectively. The proposed system showcases significantly superior active 

power stability, faster recovery, and enhanced control precision under dynamic irradiance 

conditions. In the base case, the active power (P) trace shows an undesirable transient dip into 

negative values near 0.5 seconds dropping from approximately +2500 W to as low as -200 W 

indicating a temporary power reversal where the inverter draws power from the grid. This not 

only reflects poor coordination between MPPT and inverter control but also risks grid 

instability. Furthermore, the active power recovery in the base case is sluggish, with 

oscillations persisting until approximately 1.5 seconds before stabilizing around 2500–

3000 W. In contrast, the proposed system maintains unidirectional active power flow 

throughout the simulation. Although it experiences a reduction from 2500 W to a minimum 

of ~1000 W during the 0.3–0.8 s interval due to partial shading, it avoids negative power 

excursions and stabilizes smoothly at ~2400 W by 1.3 seconds demonstrating faster dynamic 

convergence and more efficient power delivery. The proposed system thus shows improved 

transient performance and reduced power loss duration. Additionally, both systems maintain 

reactive power (Q) near zero, but the proposed system does so with even smaller oscillations 

(<±50 VAR), highlighting superior inverter phase angle control and stricter adherence to 

unity power factor operation. These quantitative improvements in the proposed system 

underscore its advanced control strategy’s effectiveness in minimizing energy exchange 

disruptions, ensuring grid compliance, while also improving the efficiency and dependability 

of electricity supply in the face of fluctuating solar circumstances. 

 

Figure 10active power and reactive power of Proposed model 
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Figure 11active power and reactive power of Base model 

 

The suggested setup achieves better control accuracy than the baseline situation when we 

compare the time-domain profiles of active power (P) and reactive power (Qₘₑₜₑᵎ), transient 

damping, and net power stabilisation (Figures 10 and 11). On the fundamental level, the 

active power initially surges to approximately +3000 W before undergoing a severe negative 

dip to nearly –1000 W between 0.1 and 0.2 s, suggesting significant instability, likely due to 

uncontrolled inrush current, delayed MPPT synchronization, or DC-link charging dynamics. 

Conversely, the proposed system, while also exhibiting an initial surge, shows a milder and 

shorter negative excursion, dipping only briefly below 0 W approximately –300 W during the 

same period, indicating more refined startup management and improved inverter-grid 

coordination. Furthermore, the proposed system’s active power recovers with fewer 

oscillations and stabilizes around 200 W by 1.3 s, closely tracking PV generation under 

partial shading. In contrast, the base system exhibits prolonged oscillatory behavior and a 

delayed stabilization beyond 1.5 s, settling slightly higher at ~250–300 W but with reduced 

dynamic efficiency and slower convergence to steady-state. In terms of reactive power 

(Qₘₑₜₑᵣ), the base system undergoes a significant startup spike exceeding +5000 VAR, 

indicating poor reactive compensation during switching and control transitions. The proposed 

system, however, maintains a peak reactive power below +1000 VAR during initialization 

and quickly settles near zero with minimal oscillatory artifacts, demonstrating superior 

inverter control loop damping and more effective compensation of non-active components. 

These improvements collectively illustrate that the proposed system delivers a smoother, 

more stable, and grid-compliant performance during transient phases and under irradiance 

disturbances, ensuring faster synchronization, lower reactive burden, and higher operational 

reliability. 
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Figure 12generated power, PV string voltage dc link voltage data, cycle of the Proposed 

model 

 

 

Figure 13 generated power, PV string voltage dc link voltage data, cycle of the Base 

model 

 

Both the planned and baseline power generation, PV string voltage, dc link voltage, and cycle 

of the plots can be found in Figures 12 and 13, respectively. The suggested solution 

demonstrates exceptional flexibility in real-time, tighter control accuracy, and improved 

dynamic tracking performance compared to the base configuration, as revealed through the 

multi-parameter analysis of key photovoltaic (PV) system variables under partial shading 

conditions. While both systems experience a drop in generated power during the 0.3 s to 1.3 s 

shading interval, the proposed system demonstrates a more controlled and narrower power 
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degradation range, decreasing from 2200 W to approximately 500 Wa sharper but more 

recoverable dipwhereas the base system only recovers from below 1000 W, indicating a less 

responsive or slower MPPT tracking under transient irradiance. Additionally, the PV string 

voltage in the proposed system exhibits a closer coupling with generated power and shows 

faster recovery, suggesting more precise localization of the global maximum power point 

(GMPP). In contrast, the base system lingers longer at suboptimal voltage levels, reflecting 

delayed convergence. The DC link voltage remains tightly regulated around 400 V in both 

systems; however, the proposed configuration limits oscillations to within ±5 V even during 

the worst-case irradiance drop, compared to the base case where fluctuations momentarily 

approach ±12 V, signaling greater voltage loop damping in the proposed inverter control. 

Most notably, the proposed system’s duty cycle modulation exhibits a broader and more 

dynamic control range, peaking at approximately 0.58 during power reduction and 

descending smoothly post-recovery, clearly illustrating a highly responsive MPPT behavior. 

The base system, by contrast, demonstrates a narrower duty cycle variation, peaking around 

0.52 with less pronounced modulation, implying reduced control granularity. These 

differences highlight the proposed system’s more robust and finely tuned coordination among 

the MPPT, DC-DC boost converter, and inverter regulation mechanisms, resulting in 

enhanced energy harvesting, faster recovery from transients, and improved stability under 

dynamic solar conditionskey indicators of superior performance for real-world PV-grid 

integration. 

 

 

Figure 14THD for Proposed 

 

Figure 25THD for Base 

 

The Figure 14 and 15 are both the proposed and baseline plots for the Total Harmonic 

Distortion (THD) where The proposed system demonstrates superior harmonic performance 

compared to the base case, as evidenced by the (THD) analysis of the inverter output 

waveform. While both systems exhibit a dominant fundamental frequency component at 60 

Hz with an identical magnitude of 336.6 units, the proposed system achieves an exceptionally 

lower THD of 0.09%, surpassing the base system’s 0.12%. This 25% relative reduction in 

THD reflects a significantly cleaner and more sinusoidal output waveform, crucial for 

enhancing power quality and reducing stress on connected loads and the utility grid. 
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Furthermore, the harmonic spectrum in the proposed system shows notably smaller 

magnitudes of low-order harmonics, with the largest harmonic components remaining below 

0.02% of the fundamentalless than half of the base system’s peak harmonic magnitude of 

0.06%. The rapid attenuation of harmonics beyond 200 Hz in the proposed design also 

indicates more effective suppression of high-frequency switching distortions, likely due to 

improved PWM strategies and enhanced filter implementation. Collectively, these 

improvements highlight the proposed inverter’s advanced control and filtering architecture, 

enabling it to deliver a higher fidelity sinusoidal output that not only meets but exceeds 

typical grid interconnection standards, thereby ensuring optimal operational efficiency and 

reduced electromagnetic interference in grid-connected photovoltaic systems. 

6 DISCUSSION 

A two-stage grid-connected PV system architecture with an ILAPO-tuned controller was 

shown to be effective in the simulation results. The DC link voltage stability has been 

significantly enhanced with the use of a high-gain voltage regulator, which allows for quick 

transient reaction to changes in irradiance and load. Under the dynamic operating 

circumstances often found in residential PV systems, Maintaining the reliability of the power 

conversion procedure depends on this. The improved settings for the current controller not 

only successfully decrease oscillations and overshoot, but they also provide smoother current 

profiles while putting less load on the inverter components. Using the SEDRL-MPPT 

method—which employs scanning to accurately determine the global maximum power point 

(GMPP) among many local maxima—solves the partial shading problem. Under 

heterogeneous irradiance conditions, which might be caused by things like passing clouds or 

shadows from adjacent buildings, this feature makes sure that the PV array can collect the 

most energy possible. The inverter complies with grid rules and reduces distribution losses by 

operating at near unity power factor with minimum reactive power exchange, according to 

power quality evaluation. The remarkable total harmonic distortion (THD) of 0.09% 

surpasses conventional benchmarks, demonstrating the control scheme's exceptional 

harmonic mitigation capabilities and bolstering the grid's reliability in power supply. By 

comparing it to a baseline control configuration, the suggested method improves power 

quality, transient dynamics, and system stability. These enhancements show that the home 

PV system is suitable for deployment in real-world circumstances since they increase its 

robustness and efficiency. 

7 CONCLUSION 

Reliable control for grid-connected home solar systems is shown in this paper using an 

ILAPO-optimized control algorithm and a novel two-stage converter architecture. By 

combining a high-gain voltage regulator with fine-tuned current controllers, the novel 

SEDRL-MPPT algorithm is able to overcome the challenges posed by partial shadow and 

unpredictable environmental conditions. A more dependable system is the result of better 

voltage control and optimal current management, which together guarantee a constant DC 

link voltage with rapid transient response and lessen oscillations and overshoot. By 

optimising energy collection and determining the global maximum power point in complex 
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irradiance patterns, the SEDRL-MPPT algorithm enhances the economic feasibility of 

residential PV systems. Further assurance of grid compliance and higher power quality is 

provided by the inverter's extremely low total harmonic distortion, near-unity power factor, 

and little reactive power fluctuations. under terms of stability, dynamic performance, and 

power quality, the proposed control system outperforms conventional methods under real-

world operating conditions. This technology has the potential to revolutionise sustainable 

energy management and boost the integration of renewable energy sources into the power 

grid, according to these studies. 
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