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Abstract: The current research uses EEG signal analysis to investigate how Applied Pressure Physiotherapy 

(APP) modulates brain activity. Before and after APP sessions, 15 volunteers had their EEGs recorded. Prior to 

Maximal-Overlap Discrete Wavelet Packet Transform (MODWPT) decomposition spanning the Delta, Theta, 

Alpha, Beta, and Gamma bands, pre-processing comprised band-pass filtering (0.5–40 Hz) and artifact removal. 

Significant variations in power were observed after APP: Alpha power climbed by 4.8%, which indicates a more 

alert but relaxed condition, whilst Delta and Theta bands declined with 9.4% and 7.8%, respectively. Decreased 

cognitive stress is further demonstrated by beta and gamma power drops for 9.8% and 6.7%, respectively. Neural 

stability improvements post APP have been observed by Hjorth measures, such as Activity (−11.5%), Mobility 

(−45.3%), as well as Complexity (−41.5%). Utilizing parameters like Mean Curve Length (MCL), classification 

analyses with Linear Discriminant Analysis (LDA) and Random Forest (RF) acquired excellent precision 

(99.97%). These results emphasize APP's viability as a non-invasive treatment promoting mental wellness and 

cognitive improvement by demonstrating that it induces a relaxed mental state. 

Keywords: Applied Pressure Physiotherapy; Biomedical Signal Processing; EEG Signal Analysis; Hjorth 

Parameters; Machine Learning; Wavelet Transform. 

1. INTRODUCTION: 

Clinical applications of acupressure, which originates in traditional medical practices, have 

established its ability to positively impact mental as well as physical wellness across the globe 

[1–3]. From a technical point of view, this non-invasive technique may be evaluated as a 

biomechanical technique that influences physiological systems through the application of 

manual pressure to certain acupoints. A dynamic structure to study energy regulation and brain 

function is offered by the association among force as well as the body's neurophysiological 

responses. Recent engineering investigation combined signal processing along with 

neuroimaging techniques to investigate the effects of acupressure on brain activity. 

Acupressure promotes the circulation of energy, or Qi, across meridian physiological channels 

by applying pressure to specific acupoint sites [4,5]. These meridians form an interconnected 

structure wherein certain nodes, or acupoints, govern both local and system-wide activities, 

much like electrical or any other hydraulic systems do [5]. Administering mechanical pressure 

to these areas lessens muscular strain and restores energy balance, which impacts the way 

signals are transmitted through the central and peripheral neural systems. Reflexology, an 

analogous technique, operates by emphasis on preset reflex zones rather than particular sites 

along these channels [6]. Both systems can be thought of as networks where pressure on a node 

or key point 'LU10' produces feedback which impacts various organs and tissues [7]. 

Technological developments in engineering have made it possible to assess brain responses to 

acupressure precisely using magnetoencephalography (MEG), electroencephalography (EEG), 

and functional magnetic resonance imaging (fMRI) [8]. During acupressure stimulation, EEG's 

high temporal resolution shows dynamic shifts in neural oscillations across the frontal as well 
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as parietal cortices, especially within the alpha and beta bands [9]. While MEG records 

increased connection between sensory regions, suggesting system-wide coordination in brain 

networks [10], fMRI offers spatial resolution, detecting stimulation across the sensorimotor 

cortex as well as the default mode network [11-12]. Engineers can examine real-time cerebral 

responses thanks to these imaging techniques, which are the foundation of contemporary brain-

machine interfaces (BCIs) including biofeedback systems. 

Wavelet analysis, an effective instrument for the signal processing for non-stationary EEG 

signal analysis. It is convenient for identifying pithy variations in brain activity since it offers 

information in both the time and frequency domains. The wavelet transform has been used to 

efficiently extract features from brain signals in tasks including motor imagery and cognitive 

load estimate [13-14]. Finding momentous patterns in a noisy data is an engineering snag that 

is imperative for applications that requires real-time monitoring. 

Decoding EEG signals, appreciating patterns linked to certain stimuli, and categorizing brain 

states are all made possible by machine learning algorithms. Support vector machines (SVM) 

and also kernel-based decision tree models have been used in recent research to predict 

therapeutic effects and distinguish between different brain responses to different acupressure 

spots [15]. These techniques facilitate real-time brain state classification in offline and online 

environments, supporting engineering efforts to create intelligent systems in healthcare 

applications. 

However, because to their intrinsic variability, brain signals are vulnerable to interference and 

noise. Engineers employ manifold learning, reduction in dimensionality method that converts 

intricate high-dimensional brain input into lower-dimensional representations, to overcome this 

difficulty [16-19]. By detecting changes in connection patterns and identifying latent states, 

this method enables robust investigation of neural networks and offers new perspectives on 

how pressure influences brain function. 

The perspective for applications in engineering in healthcare is alluring when wavelet-based 

feature extraction is combined with the machine learning methods. For example, the 

classification of the wavelet coefficient of EEG data can accurately distinguish between 

cognitive tasks, motor processes, and neurological diseases [20-21]. This work builds on prior 

attempts examining the significance of acupressure on EEG signals, emphasizing on how brain 

activity responds to mechanical stimulation at specific acupoints. It is feasible to acquire an 

improved comprehension of the neurophysiological mechanisms that underlie acupressure by 

incorporating machine intelligence with signal processing. 

2. METHODOLOGY 

This section discusses the EEG dataset and the methodologies used to interpret the signals in 

order to determine the effect of acupressure on neural activity. The primary phases in the 

analysis are data acquisition, pre-processing, feature extraction and classification, as illustrated 

in Figure 1. To make sure that the brain signals are appropriately depicted, the collected EEG 

data is initially pre-processed to minimize noise and interference.  Band-pass filter efficiently 

minimizes high-frequency artifacts and low-frequency drifts by narrowing the signals to a 

frequency that spans 0.5 to 40 Hz. 

After the filtration process, the EEG signals are disintegrated using the Discrete Wavelet 

Transform (DWT) to split them into their respective frequency sub-bands: Delta, Theta, Alpha, 
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Beta, and Gamma. A more thorough examination of the neural processes in response to 

acupressure is made feasible by this decomposition. Various features are extracted to capture 

relevant information about brain activity through the decomposed signals. These consist of 

Mean Curve Length (MCL), Standard Entropy Analysis (StEA), Fractal Analysis (FA), 

Average Energy (AvE), Hjorth Parameters (HP), and Kurtosis (KRS). These metrics enable an 

exhaustive representation of the EEG signals and enable significant insights into their degree 

of complexity, uncertainty, and energy distribution. 

 

Fig. 1. The schematic of the suggested DWT-based framework for neurological brain 

signal assessment. 

To precisely evaluate the therapeutic benefits of acupressure, the acquired attributes are 

further classified employing several kinds of machine learning methods. A multitude of 

classifiers are used, such as Random Forest (RF), Extreme Learning Machine (ELM), Logistic 

Regression (LoR), Naïve Bayes (NB), Support Vector Machine (SVM), K-Nearest Neighbor 

(KNN), Decision Tree (DT), Linear Discriminant Analysis (LDA), and Artificial Neural 

Network (ANN). To assess the best approach to distinguished the effects of acupressure, a 

variety of these traits were investigated. The validity of the evaluation is ensured by simulating 

and verifying the procedures using MATLAB software tools. The following subsections 

present a comprehensive overview and discussion of each step, from collecting data to 

classification. 

2.1 Dataset Description 

2.1.1 Entrants 

For the purpose of the study, the EEG dataset was recorded from participants when applied 

pressure physiotherapy and as well as at control conditions, i.e. at the resting state condition, 

at the Brain Computer Interface (BCI) Laboratory, Electrical & Electronics Engineering 

Department, Birla Institute of Technology, Mesra, Jharkhand, India. The recording process was 

conducted under the supervision of experienced medical professionals to ensure the accuracy 

and reliability of the data collected. 

EEG data were collected from 15 (n=15 male) healthy participants using an 8-channel EEG 

recording setup. Each subject participated in two recording sessions on the same day: a resting-

state session serving as the control group and an active session where acupressure was applied. 
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The mean age of the participants was 22.41 years (StD = 3.26). All subjects, comprising 

students and staff members from the university, voluntarily participated and provided informed 

consent for the EEG recordings. None of the participants suffered from chronic drinking or 

smoking. None of the participants reported history of any neurological as in brain tumor, stroke, 

migraine or epilepsy or psychological conditions. Participants were not allowed to consume 

alcohol, smoke, tea or coffee within 6 hours of the trial. To assure transparency and conscious 

involvement, those who participated were provided with a breakdown of the goal and terms of 

the study. The trial's significant artifact contents resulted in the expulsion of two subjects. 

2.1.2 Experimental Protocol: Pressure Physiotherapy Sessions 

For the purpose to acquire EEG data, pressure therapy was stimulated to a specific spot on the 

individuals' hands, designated as "LU10." After each  session, the patient was provided with 

five minutes for relaxation. Twenty experimental runs were conducted for each subject. The 

recording procedure for each session followed these steps: 

• Relaxation phase: The subject sat in a relaxed position with their eyes closed to ensure minimal 

interference from external stimuli. 

• Constant high-pressure phase: A constant pressure of 8-10N was applied for 60-70 seconds on 

the same Yang-10 point. 

• Relaxation interval: The subject was allowed to relax for 5 to 10 minutes. 

• Repetition: Steps were repeated for 20 epochs to ensure sufficient data collection and signal 

stability. 

This protocol ensures a comprehensive dataset with varied physiological responses to different 

pressure intensities and finger locations, aiding in the study of EEG patterns during applied 

pressure therapy. 

2.1.3 Data Acquisition System 

EEG dataset were collected using g.NAUTILUS Research instrumentation acquisition device 

by g.Tec Medical Engineering, Austria system with 24 bits resolution and sampling rate of 

500Hz. The placement of the electrodes followed the International 10–20 System [22]. For this 

study, EEG signals were captured using 8 active electrodes positioned at the following scalp 

locations: Fz, Cz, P3, Pz, P4, PO7, PO8, and Oz (as per Table 1). A reference electrode was 

placed on the subject’s right earlobe (A1). The complete electrode placement configuration is 

illustrated in Figure. 2.. 

Table 1. Electrode placement according to the international 10-20 system. 

Channel 

No. 

Electrode 

Position 

Channel 

No. 

Electrode 

Position 

1 Fz 5 P4 

2 Cz 6 PO7 

3 P3 7 PO8 

4 Pz 8 Oz 

Ground FPz Reference Right Ear 

Lobe 
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During the recording sessions, subjects remained awake and relaxed with their eyes closed to 

minimize visual interference. After preprocessing, a visual inspection was performed to select 

at least 40 epochs, each lasting two seconds, from the recordings of each subject. This 

meticulous selection process ensures high-quality data, suitable for further analysis and feature 

extraction. 

 

Fig. 2. The EEG cap layout for electrodes as per 10-20 system 

 2.2 Pre-Processing 

Artefacts and noise were also collected during the EEG recordings along with the signals. The 

undesired components of the signal were generated through electrode impedance fluctuations, 

magnetic fields of the nearby electronic devices, variations in breathing patterns, as well as 

involuntary human movements [23, 24]. 

Pre-processing was performed to ensure the integrity of the EEG signals and remove the 

artefacts and noises. The unwanted frequency components outside the range of interest were 

discarded using a bandpass filter. A digital finite impulse response (FIR) band-pass filter was 

used to cut frequencies set between 0.5 Hz and 40 Hz, preserving the relevant neural activity 

of the interested frequency band while filtering out low-frequency drifts and high-frequency 

noise. The combination of digital filtering and manual correction ensured that clean and 

interesting EEG data were retained for further processing and analysis. 

2.3 Wavelet Decomposition 

Wavelet transform, an effective tool for multiresolution analysis of any non-stationary signals. 

The distinctive property of wavelets - being well-localized in both time and frequency domains, 

enables simultaneous decomposition of the signal across varying resolutions. In view of this 

trait, wavelet transforms are particularly well-suited to evaluating EEG signals, since they're 

non-stationary and fluctuate across time and frequency [25]. The continuous wavelet transform 

(CWT) of a signal ( )x t is defined in [21] as follows: 

1
( , ) ( )

t
CWT a x t dt

aa


 



−

− 
=  

 
    (1) 

Where ‘ a ’ and ‘ ’ are the scaling and shifting parameters, respectively, and ‘ ’ is the mother 

wavelet defined by: 

1
( )

t
t
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

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     (2) 



Eksplorium  p-ISSN 0854-1418 

Volume 46 No. 1, May 2025:  1207–1229 e-ISSN 2503-426X 

1212 
 

Computing wavelet coefficients for all possible scales and shifts is computationally expensive. 

To address this, the Discrete Wavelet Transform (DWT) is used, where the scaling factor a and 

shifting factor   are discretized as 2a j= and 2 j k =  . The DWT involves signal convolution 

with the mother wavelet ( ),s n k followed by down-sampling. The DWT of a signal ( )x n (where, 

1 n N  ) is expressed in [26] as: 

2 1

2

( ) ( ) ((2 1) ), 0,1,..., 1
2

k

m k

N
X k x m l k m k

+

=

= + − = −   (3) 

2 1

2

( ) ( ) ((2 1) ), 0,1,..., 1
2

k

m k

N
X k x m h k m k

+

=

= + − = −   (4) 

where ( )l n and ( )h n are the low-pass and high-pass impulse responses of the mother wavelet, 

respectively. The approximation coefficients are represented by Equation (3), while the detail 

coefficients are given by Equation (4). The mother wavelet function is defined as: 

,

1
( ) ((2 1) )s n k k m

s
 = + −     (5) 

where s is the scale parameter and n is the shift parameter. 

A more generalized form of wavelet transform is the Wavelet Packet Transform (WPT). Unlike 

DWT, which decomposes only the approximation coefficients at each step, WPT decomposes 

both the approximation and detail coefficients into higher and lower frequency components. 

This makes WPT superior to DWT by offering greater flexibility for signal analysis. In contrast 

to WPT, Maximal-Overlap Discrete Wavelet Packet Transform (MDWP) retains all the 

decomposed packets from each level, providing a complete decomposition of the signal while 

preserving shift-invariance. In this study, MDWP was employed by applying Wavelet Packet 

Transform (WPT) with five-level decomposition using the sym5 mother wavelet. The shift-

invariance feature is especially valuable when analyzing non-stationary signals like EEG, 

where signal stability and precise phase information are essential for capturing subtle changes 

over time.  

Mathematically, MDWP coefficient s at level j can be obtained from the convolution of the 

original signal 0

0x s= with infinite impulse response (IIS) filters g and h are estimated by [27]: 
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where the node number 2z m= and 12 1jm N− −  . The properties of scaling and wavelet filters

g and h are respectively given as the following: 
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Power quality assessment has made a significant contribution of MDWP for feature extraction 

[28]. In a variety of usages, particularly epileptic seizures based on EEG signals, the features 



Eksplorium  p-ISSN 0854-1418 

Volume 46 No. 1, May 2025:  1207–1229 e-ISSN 2503-426X 

1213 
 

acquired through MODWPT improves classification efficiency [29]. These coefficients are 

essentially independent at various levels of decomposition [30].  

Furthermore, tailored signal reconstruction has been made feasible by employing MDWP, 

allowing for targeted examination into particular frequency components. By decomposition of 

signals using the coefficients of particular sub-bands, this reconstruction utilizes the 

capabilities of the inverse MDWP to examine localized frequency responses. The use of 

MDWP in EEG studies is improved by its flexibility, especially in therapies where alterations 

to brain oscillations are to be expected. MDWP delivers an effective structure for assessing 

signals from pre- and post-intervention within frequency bands in research contexts, including 

investigating how acupressure influences neural activity. This helps identify frequency-specific 

responses to stimulation that may point toward shifts in cognition or physiology. 

2.4 Feature Extraction 

This study's dataset was segmented into 54 epochs lasting two seconds and consisted of 1024 

samples. The Discrete Wavelet Transform (DWT) was applied to all epochs, and the power of 

all retained packets was computed using the following formula [30]: 

2

,

1

( ) ( )
n

l j

p

e W X p
=

=       (6) 

where ( )X p is the amplitude of the represents the amplitude of the thp data point of packet ,l jW , 

while n is the total number of samples present in the packet, l represents the decomposed level, 

and j is the packet number at that level. In APP studies, energy features have been extensively 

used and are computed owing to the reason that during stimuli, signal exhibits larger amplitudes 

over a period of time, confining large signal energy to a limited scale. The capabilities of energy 

features in EEG signal analysis and classification have been widely studied in the literature 

[32]. Han and Gotman [33] extracted energy from different bands of discrete wavelet transform 

as features to identify seizures. Göksu [34] extracted energy features in the time-frequency 

domain. In this study, energy features are computed on MDWP from all epochs of every 

channel.  

A number of statistical characteristics were integrated independently alongside MDWP across 

participants across experimental groups in order to improve the performance of the diagnostic 

system even more. This study emphasized on features that can provide a broader overview of 

signal distribution. Mean Curve Length (MCL) [35], Average Power (AvE), Hjorth metrics 

(activity, mobility and complexity), and Standard Deviation (StD) were amongst the metrics 

used in the evaluation aimed at the power and information distribution in EEG signals. These 

features were then used to create feature vectors, which eventually served as parameters for 

machine learning algorithms and allowed for the highly precise and reliable classification of 

EEG data. This method provides a deep understanding of EEG dynamics, bolstering strong 

analytical and clinical findings. Table 2 incorporates the various features that were extracted 

in the investigation. 
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Table 2: Mathematical Expressions and Annotations for EEG Signal Features 

Feature Mathematical Expression Annotations used 

Mean Curve Length 

(MC) [49] 1

1
( 1) ( )

1

N

n

MC S n S n
N =

= + −
−
  

( )S n is the EEG signal at the 

time n ; and,  N being the 

total count of data points in 

the time series. 

Standard deviation 

(StD) [36] 

 

2

1

1
( ( ) )

N

n

StD S n
N


=

= −  
( )S n is the EEG signal at the 

time n ; and,  N being the 

total count of data points in 

the time series; and 

representing the mean of the 

population. 

Variance (VAR) 

[36] 

 

2

1

1
( ( ) )

N

n

VAR S n
N


=

= −  
( )S n is the EEG signal at the 

time n ; and,  N being the 

total count of data points in 

the time series; and 

representing the mean of the 

population. 

Average Energy 

(AE) [4] 

 

2

1

( )
N

n

AE S n
=

=  
( )S n is the EEG signal at the 

time n ; and,  N being the 

total count of data points in 

the time series. 

Hjorth Activity 

(HA) [37] 
2

1

1
( ( ) )

N

n

HA S n
N


=

= −  
( )S n is the EEG signal at the 

time n ; and,  N being the 

total count of data points in 

the time series; and 

representing the mean of the 

population. 

Hjorth Mobility 

(HM) [37] 
( ( ) ')

( ( ))

HA S n
HM

HA S n
=  

( ) 'S n  is the first derivative of 

the signal ( )S n with respect 

to time; and, ( ( ) ')HA S n is the 

variance of the derivative. 

Hjorth Complexity 

(HC) [37] 
( ( ) '')( ( ) ') ( ( ) ')

( ( ))( ( )) ( ( ))

HA S nHA S n HA S n
HC

HA S nHA S n HA S n
= =  

( ) 'S n  is the first derivative of 

the signal ( )S n with respect 

to time; ( ( ) ')HA S n is the 

variance of the derivative; 

and, ( ) ''S n  is the second 

derivative of the signal 

2.5 Statistical Analysis 

Paired sample t-tests and linear regression analysis were employed to investigate the impact of 

APP on EEG characteristics. Linear regression was used to evaluate the mean values of EEG 

variables amongst sessions by comparing variations for every EEG feature vector prior to and 



Eksplorium  p-ISSN 0854-1418 

Volume 46 No. 1, May 2025:  1207–1229 e-ISSN 2503-426X 

1215 
 

following APP. The viability for these EEG feature vectors for analysis was confirmed by a 

normality test. Table 3 depicts the data together with a 95% confidence interval. 

Table 3: APP effects on EEG features in the experimental and control group 

Features Parameters 
Experimental Group 

Pre-APP Post-APP 

Average 

Energy 

Mean 3.3235 ± 0.71* 3.5291 ± 1.379 

Mean Curve 

Length 

Mean 1.1182 ± 

0.033** 

1.1109 ± 0.025 

Delta Power Mean 0.0193 ± 

0.006** 

0.0248 ± 

0.008** 

Alpha Power Mean 0.0273 ±0 

.008** 

0.0250 ± 

0.008** 

Theta Power Mean 0.0246 ± 

0.007** 

0.0247 ± 0.007 

Beta Power Mean 0.1113 ± 

0.032** 

0.1122 ± 

0.033** 

Asterisks indicate statistical significance, where * denotes p<0.05 and ** denotes p<0.01. 

3. RESULTS  

The EEG signals were subsequently pared down into frequency bands using the Maximal 

Overlap Discrete Wavelet Packet Transform (MDWP) after the filtering of the EEG signal. To 

gain insight into the EEG signals, parameters like Mean Curve Length (MC), Standard 

Deviation (StD), Variance (Var), and Average Energy (AE) were computed. Afterwards, 

classifiers that included Random Forest, SVM, and LDA were employed to differentiate 

amongst pre- and post-APP cases. The unique EEG rhythm variations spurred through APP 

have been emphasized using the high accuracy of classification (99.97%) shown by classifiers 

notably Random Forest and LDA.  

3.1 Total Energy 

The pre- and post-acupressure condition displayed substantial variations in the measurement 

of EEG power within different sub-bands, which suggests that the intervention exerted an effect 

on brain activity. After acupressure, the mean power in the Delta band dipped by 9.4% (pre-

acupressure mean: 0.053 ± 0.012; post-acupressure mean: 0.048 ± 0.011). After acupressure, 

the power in the theta band dipped by 7.8% (mean before acupressure: 0.102 ± 0.018; mean 

after acupressure: 0.094 ± 0.016). The decrease in delta and theta strength suggests a shift 

toward a balanced, alert state that contributes to a calm yet focused mental state (Figure. 3 and 

Figure. 4). 
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Fig. 3.  Power Distribution Across EEG Sub-bands in Pre-Acupressure Condition 

Power distribution in the resting state EEG (pre-acupressure) for the Delta, Theta, Alpha, Beta, 

and Gamma bands over epochs. The red dashed line indicates the mean power for each subplot, 

which displays the power each epoch for a particular sub-band. 
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Fig. 4. Power Distribution Across EEG Sub-bands in Post-Acupressure Condition 

Power distribution in the EEG recorded after acupressure for the Delta, Theta, Alpha, Beta, 

and Gamma bands over epochs. The red dashed line indicates the mean power for each subplot, 

which displays the power each epoch for a particular sub-band. 

It's fascinating to observe that the alpha band's mean power improved by 4.8% after 

acupressure (pre-acupressure mean: 0.125 ± 0.015; post-acupressure mean: 0.131 ± 0.014). 

This rise confirms the notion that acupressure promotes a clear and peaceful state of mind 

through boosting mental relaxation. Following the intervention, the beta band's power 
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decreased by 9.8% (pre-acupressure mean: 0.041 ± 0.009; post-acupressure mean: 0.037 ± 

0.008). This drop signifies a shift towards a more relaxed mental state after acupressure, as 

well as a decrease in cognitive load and mental strain. The power of the gamma band declined 

by 6.7% after acupressure (mean before acupressure: 0.0015 ± 0.0003; mean after acupressure: 

0.0014 ± 0.0002). This decrease suggests a reduction in high-frequency neural activity, 

indicative of a relaxed mental state. Overall, the observed changes in EEG power distribution 

across these sub-bands indicate that acupressure may help foster a balanced state of relaxation 

and mental clarity, reducing mental tension and promoting calmness without sedation. The 

drop reflects a decrease in high-frequency brain activity, which is indicative of mental 

relaxation. Acupressure may aid in achieving a balanced state of relaxation along with mental 

clarity by lowering mental tension and encouraging quiet without sedation, according to the 

overall variation in EEG power throughout various sub-bands that was observed. 

 

Fig. 5. AE before APP (left) and AE after APP (right). Data were obtained from the average 

total energy across electrodes (reference electrodes excluded) for pre-stimuli and post-

stimuli. 

The two plots present the energy variations in EEG signals across epochs under two conditions: 

a resting state (Fig. 6 left) and post-acupressure (Fig. 6 right). In the resting state, the mean 

energy level was approximately 2.9. After the acupressure intervention, the mean energy level, 
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rose to approximately 9.5. This increase indicates a substantial enhancement in EEG energy 

levels following acupressure. 

3.2 Hjorth Parameters 

Figure 6 shows a tripartite sequence of sub-figures that represent the Hjorth parameters 

associated with the resting activity over all electrodes. Each of three dynamic statistical 

measures—activity, mobility, and complexity—is represented by each of these sub-figures. 

These characteristics give information about the signal's frequency, variance, and degree to 

which its waveform resembles that of a pristine sine wave, respectively. The median activity 

for all channels in the pre-acupressure state was roughly 0.078 ± 0.021. The mean activity 

declined to 0.069 ± 0.018 post acupressure. It suggests a decline in the amplitude of the EEG 

signal after the therapy, with an activity drop of 11.5%. Electrodes at position 2 and 3 showed 

highest pre-acupressure Activity, with values approximately 0.1, whereas channels 1 and 8 

exhibited the lowest values in both instances.  

 

Fig. 6. Hjorth parameters of the Resting movement, namely activity, mobility, and 

complexity for all electrodes. 

In the pre-acupressure condition, the mean value for the Mobility parameter across 

electrodes was 0.53 ± 0.02. Post therapy the mean mobility reduced by 45.3% to 0.29 ± 0.03. 

All of the electrodes demonstrated this decline, despite the declines in electrodes 2, 3, and 4 

were quite apparent. A decline in mobility denotes a decrease in the EEG signal's frequency 

variability, which often corresponds to a more stable mental state. 

Prior to the therapy, the Complexity parameter's mean value was 0.53 ± 0.02; after acupressure, 

it declined to 0.31 ± 0.04, which suggests a 41.5% decrease. All channels showed a decline in 

Complexity, much like Mobility, with channels 1 and 2 seeing the most drastic decreases. A 

reduced complexity indicates a more steady and perhaps relaxed brain state. 
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Fig. 7: Hjorth parameters of the postAPP movement, namely activity, mobility, and 

complexity for all electrodes. 

When both figures 6 and 7 are compared, different brain activity patterns related to the various 

APP stimuli can be seen. A general elevation in fluctuation along with amplitude throughout 

all parameters along with electrodes characterizes the postAPP movement, whereas the 

preAPP's high amplitude for Hjorth parameters is primarily restricted to electrodes 2 and 3. 

This implies that compared to the resting state, the postAPP movement activates a larger 

network of brain areas, increasing waveform complexity, variation, and frequency content. The 

two figures exhibit distinct patterns of activity, movement, and complexity, which highlight 

the brain's dynamic response to changing cognitive and motor demands. The significant 

differences between the postAPP and resting states could offer important new information on 

the neural connections of activity-specific neural networks and their flexibility.  

3.3 Mean Curve Length (MCL) 

 

Fig. 8. Comparison of Mean Curve Length Across EEG Channels Pre- and Post-Acupressure 

Intervention 



Eksplorium  p-ISSN 0854-1418 

Volume 46 No. 1, May 2025:  1207–1229 e-ISSN 2503-426X 

1221 
 

Variation of MCL across the pre and post the intervention. A steady decrease in MCL across 

all channels indicates reduced signal complexity and variability. This decrease would suggest 

that the acupressure treatment had a soothing impact, encouraging a more stable brain state. 

Above figure (figure 8) depicts the variation of MCL across the pre and post the intervention. 

A steady decrease in MCL across all channels indicates reduced signal complexity and 

variability. This decrease would suggest that the acupressure treatment had a soothing impact, 

encouraging a more stable brain state. After the therapy intervention, the MCL for each EEG 

channels significantly dwindled, which suggests a reduction in signal variability. MCL across 

channels in the resting state varied between 0.073 ± 0.002 and 0.096 ± 0.005. This range 

decreased adhering to intervention, with MCL readings ranging from 0.070 ± 0.002 to 0.093 ± 

0.004. All of the channels exhibited a decrease in MCL. However, electrode at position 8 

experienced the largest decline (4.1%); thereafter, electrodes at positions 3 and 4 all of which 

showed a 3.3% decrease. Channels 2, 5, and 7 were among the others that saw declines ranging 

from 2.4% to 3.2%. This general decrease in MCL indicates the potential of the therapy, which 

could encourage a placid brain state.  

3.4 Classification 

By segregating EEG data acquired before APP (pre-APP) from after APP (post-APP), we were 

able to assess classification performance and also their effects on EEG signals. This was 

formulated as a two-class classification challenge (preAPP vs. postAPP), and we utilized a 

variety of classifiers along with certain feature vectors that were extracted using the MODWT. 

Various classifiers were utilized to assess the categorization task of the EEG signal data for pre 

and post APP state based on collected features. Among the classifiers were Logistic Regression 

(LoR), Among the classifiers were Linear Discriminant Analysis (LDA), that has become 

popular for being able to recognize linear edges amongst classes, and Logistic Regression 

(LoR), a model that typically predicts a binary outcome according to the data being input. 

Furthermore, Artificial Neural Networks (ANN) were also employed, which are able to utilize 

multiple layers of associated nodes to imitate intricate patterns in the data; Support Vector 

Machines (SVM) are noted for their flexibility in handling high-dimensional spaces to devise 

the best hyperplane for classification. Random Forest (RF), an ensemble-based approach which 

utilizes numerous decision trees in order to enhance the precision of predictions while 

diminishing overfitting. The K-Nearest Neighbor (KNN) approach was furthermore adopted. 

Specimens categorizes considering the vast majority grouping of their closest neighbors. The 

performance and ease of use of the Bayes theorem-based stochastic classifier Naïve Bayes 

(NB) to handle high-dimensional data was assessed. Extreme Learning Machines (ELM) have 

been used due to their speedy learning speed and scalability for large datasets, while Quadratic 

Discriminant Analysis (QDA) offered a non-linear extension of LDA and acquired larger class 

variances in the features domain. 

These classifiers were assessed through a number feature combinations, comprising Mean 

Curve Length (MC), Average Energy (AE), Standard Deviation (StD), and Hjorth Parameters 

(HP). We also investigated the way it responded after all of the features were integrated. 

The overall classification efficacy across each classifier along with feature combination is 

summarized in Table 4. The classifiers with the highest accuracy rates were LDA, RF, ELM, 

QDA, and KNN. With a classification accuracy of 0.0199.97%±0.01, the LDA classifier used 
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along with MDWP and MC proved the most successful. Significant classification performance 

across several classifiers was also obtained by integrating DWT and SEA features. 

Table 4: Classification accuracy for pre APP vs post APP features based on MDWP 

technique. 

Features  LDA 

Logistic 

Regressi

on 

SVM ANN RF kNN 
Naive 

Bayes 

Extrem

e 

Learnin

g 

Machin

e 

QD

A 

DWT+ 

MC 

99.97 

±0.01 

87.21 

±0.06 

92.4

2 

±0.7 

97.5

0 

±0.0

9 

99.94 

±0.2 

80.10 

±0.04 

90.84 

±0.07 

94.0 

±0.3 

94.6

1 

±0.

3 

DWT+ 

HP 

86.61 

±0.3 

86.73 

±0.7 

85.2

4 

±0.1 

91.0

3 

±0.0

9 

87.76 

±0.04 

87.53 

±0.06 

95.24 

±0.06 

98.41 

±0.1 

95.4

9 

±0.

1 

DWT+ 

FA 

89.69 

±0.1 

89.35 

±0.02 

89.6

9 

±0.3 

89.9

8 

±0.1 

90.03 

±0.03 

90.38 

±0.05 

86.0 

±0.06 

85.83 

±0.03 

84.2

5 

±0.

13 

DWT+St

D 

89.1 

±0.02 

89.0 

±0.03 

89.6 

±0.8 

89.4

7 

±0.1 

87.29 

±0.6 

88.32 

±0.06 

85.57 

±0.07 

91.73 

±0.1 

85.9

6 

±0.

5 

DWT+A

E 

88.66 

±0.07 

88.66 

±0.2 

88.6

6 

±0.0

7 

89.2

4 

±0.0

2 

88.32 

±0.03 

88.66 

±0.6 

82.82 

±0.2 

89.37 

±0.2 

88.7

0 

±0.

05 

All 

features 

90.91 

±0.02 

81.82 

±0.3 

93.3

3 

±0.5 

97.4

1 

±0.1 

99.97 

±0.04 

98.51 

±0.1 

90.64 

±0.01 

90.10 

±0.7 

84.9

5 

±0.

09 

To evaluate the robustness and reliability of classification, sensitivity, specificity, and accuracy 

for every classifier and feature combination were further calculated. According to these 

metrics, LDA, RF, and ANN were the top-performing classifiers for the preAPP vs. postAPP 

classification. Algorithms exhibited excellent specificity and sensitivity values, indicating that 

they could discern minute variations between pre- and post-APP EEG signals. 

Table 5 offers an extensive review of the accuracy and sensitivity of each classifier, illustrating 

the performance fluctuations across various attribute combinations. The results obtained had 

highest performance when MDWP was combined with Mean Curve Length (MC); also, LDA 

had the highest precision, at 99.93% ± 0.01.  
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Table 5: The performance of classifiers for the classification task- sensitivity, specificity, and 

accuracy. 

Classifier 
Best 

Features 

Sensitivity 

% 

Specificity 

% 

Accuracy 

% 

LDA MC 97.61 ± 0.8 93.04 ±0.02 99.97 

±0.01 

Logistic 

Regression 

FA 87.35 ± 0.9 88.13 ± 71 89.35 

±0.02 

SVM All features 92.42 ± 

0.03 

91.57 ± 07 93.33 ±0.5 

ANN MC 97.64 ±0.2  96.04 ± 43 97.50 

±0.09 

RF All features 98.06 ±0.04 99.04 ±04 99.97 

±0.04 

kNN All features 98.12 ±0.9 98.01 ±32 98.51 ±0.1 

Naive Bayes HP 95.01 ±0.08 94.62 ±17 95.24 

±0.06 

Extreme 

Learning 

Machine 

HP 97.35 ±0.1 98.31 ±68 98.41 ±0.1 

QDA HP 94.0 ±0.02 94.18 ±0.4 95.49 ±0.1 

The extent to which different machine learning classifiers had the ability differentiate amid 

pre- and post-APP EEG states was evaluated by three crucial metrics: specificity, sensitivity, 

and accuracy. As illustrated (see Fig. 10), Linear Discriminant Analysis (LDA) and Random 

Forest (RF) display the highest level of accuracy. Moreover, Extreme Learning Machine 

(ELM) and Random Forest (RF) exhibited ideal specificity, indicating their ability to precisely 

detect negative cases. 

 

Fig. 9. Comparing the Effectiveness of Machine Learning Classifiers for Classifying EEG 

Data in Applied Pressure Physiotherapy Research 
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Likewise, when involved sensitivity and specificity, ANN and RF outperformed on all three 

parameters, offers an equilibrium amongst dependability and performance. ANN and RF are 

dependable alternatives for sorting EEG data due to the ability they have to efficiently exclude 

instances of negative activity (specificity) along with identify positive cases (sensitivity). 

However, k-Nearest Neighbors (kNN) demonstrated a lower sensitivity when weighed against 

the other classifiers. Nevertheless, the algorithms that utilized ANN, RF, and LDA offered 

superior findings for each parameter, making them ideal to assess EEG responses to APP.  

4. DISCUSSION 

The results of this research illustrate how Applied Pressure Physiotherapy (APP) significantly 

impacts brain activity when assessed by EEG data. Following APP, the wavelet analysis 

exhibited frequency-specific variations throughout the delta, theta, alpha, and beta bands, 

which suggests that APP may interact across cortical networks and regulate brain oscillatory 

dynamics. More specifically, post-APP sessions showed increased mid-range beta power and 

delta power, indicating an improved equilibrium between alertness and tranquillity. These 

variations coincide with previous studies showing that acupressure and related therapies can 

influence EEG frequencies, probably via effects on both neuronal and non-neuronal processes 

within the central nervous system [36]. 

Following acupressure, there was a 9.4% and 7.8% decline in delta along with theta power, 

respectively. This decline in power suggests a transition from a very relaxed state towards a 

balanced alertness, retains a calm nevertheless focused mental state [37]. The power associated 

with the Alpha band raised by 4.8% following the acupressure session, which suggests an 

improvement in mental calmness. This increase indicates that through encouraging relaxation, 

acupressure helps the brain achieve a state of calm yet attentiveness.  

Following administering acupressure, the beta band, which corresponds with cognitive 

functioning, the power within the band dropped by 9.8%. A reduced beta power indicates 

through decreased mental strain and effort, acupressure can foster a calm, stress-relieving state. 

The Gamma band revealed a 6.7% decline in power after the intervention, which suggests a 

decline in high-frequency cognitive functions. The observed decrease implies that through 

decreasing high-level cognitive strain, acupressure fosters a less strenuous state of mind [38]. 

The notable observation was a progressive decline in robustness in the theta as well as delta 

bands upon APP, which implies a shift toward a more attentive and regulated mental state. This 

drop in activity indicates that APP lessens mental exhaustion and also stimulates a calm yet 

concentrated condition. Furthermore, a boost in alpha power after the session corresponds with 

studies that demonstrate acupressure promotes mental clarity and relaxation [39]. Reduced 

high-frequency brain activity is also reflected in lower beta as well as gamma power levels 

reported after APP, which might be associated with less mental strain and cognitive stress [40]. 

The current study further analyzed Hjorth metrics, which demonstrate that reductions in Hjorth 

activity, mobility, as well as complexity within channels after APP, which also indicate a more 

stable and relaxed neuronal state. The variation in EEG indices that occurred post the session 

offers insight into how acupressure influences brain activity.  A distinct component of the brain 

state is conveyed through each metric. 

A 11.5% decrease in activity following acupressure leads to a drop in the amplitude of the EEG 

signal, which could be a sign for less neuronal excitement. Hjorth Activity, indicates the 
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strength of a signal, pertains to the brain's general state of arousal. A greater consistency and 

stability in brain state is suggested by the notable 45.3% drop in mobility, which also suggests 

a decrease in the diversity of EEG signal frequencies. Frequent changes in frequency 

components, which tend to be related to stress or cognitive exertion, are reflected in high 

mobility [41]. Acupressure may help stabilize mental states by lowering anxiety or mental 

strain, as seen by the post-acupressure drop in mobility within channels, specifically channels 

2, 3, and 4. 

The 41.5% drop in Complexity after intervention correlates to a less erratic EEG output, which 

is symptomatic of a more regular and coherent pattern of brain activity. Complexity is often 

connected with mental strain and neural processing demands. The post-acupressure state's 

diminished Complexity levels, particularly within channels 1 and 2, indicate that acupressure 

fosters mental relaxation and lessens the intense cognitive activity. A calm mental state is often 

linked to a decline in frequency variation and signal complexities, which is illustrated by 

reduced mobility and complexity [41]. 

A shift to fewer variations in brain activity is apparent by a steady drop in mean curve length 

throughout all EEG channels. A fall in mean curve length within channels suggests that 

acupressure reduces variations in the EEG signal, which in turn encourages a calming effect. 

This metric pertains to the intricate nature of EEG signals [35]. With drops of 3.1% and 3.3%, 

respectively, channels 2 and 3 exhibited the largest mean curve length reductions. This implies 

that, in terms of decreased signal variability, these brain regions would be especially sensitive 

to acupressure. The biggest percentage drop (4.1%) was observed in channel 8, which would 

suggest that acupressure has a strong impact on the brain areas connected to this channel, 

possibly suggesting a stronger relaxing effect. Overall, the reduction in mean curve length 

within channels following acupressure therapy offers credence to the notion that acupressure 

therapy suppresses EEG signal variability, consequently promoting a calm mental state. This 

decrease could be a sign of a more coordinated and controlled rhythm in brain activity. 

With classifiers like Linear Discriminant Analysis (LDA) reaching excellent accuracy, the 

classification evaluation further emphasizes the extent to which APP works to alter EEG 

patterns. With parameters as Mean Curve Length and Sample Entropy exhibiting significant 

sensitivity and specificity. The findings demonstrate that different machine learning techniques 

may efficiently categorize EEG data among prior to and post-APP stages. These findings 

also indicate that wavelet-extracted EEG-based indices could be trustworthy indicators of APP 

performance. 

These findings reveal that, as when compared with comparable therapies like acupuncture, APP 

exhibits significant impacts on EEG across various frequencies. Though APP employs distinct 

technique, it exhibits a similar effect to acupuncture on brain frequencies and connection 

patterns and also is less invasive. By offering novel viewpoints on how physical interventions 

as APP effect the activity of the brain, this article adds to the evidence demonstrating the 

neurophysiological advantages of acupressure therapy [43]. 

5. CONCLUSION 

Significant variations in EEG signals across frequency bands in the present investigation 

illustrate the ability of Applied Pressure Physiotherapy (APP) to influence brain activity. 

Wavelet analysis demonstrated a trend toward a serene, focused state with less cognitive strain, 

evidenced by increased alpha power, diminished beta along with gamma power, and decreased 
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delta and theta power. Hjorth parameter analysis provided additional confirmation of the post-

APP decreases in complexity, mobility, and activity. Effectiveness in classifying between pre- 

and post-APP stages has been demonstrated using classification methods as Random Forest 

and LDA. The findings highlight the neurophysiological benefits associated with APP and its 

potential to serve as a therapeutic intervention to support mental health. 
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