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Abstract: The explosion of smart technologies has been forcing educational institutions to utilize same or similar 

intelligent infrastructure for optimal performance and data-driven decisions. This paper describes the design and 

creation of an intelligent campus ecosystem based on Digital Twin (DT) technology, and the use of machine 

learning algorithms to model the campus to facilitate simulation, monitoring and optimization. Four algorithms 

were used in the project - K-Means clustering for occupancy pattern detection; Long Short-Term Memory (LSTM) 

networks for energy prediction; A* algorithm for real time navigation on campus; Random Forest for Security 

risk classification. A simulated set of historical data of a size similar to a mid-sized university for a 30-day period 

was developed to run the project. The results showed significant benefits of a smart campus, such as a decreased 

energy usage of 9.4% per day; decreased HVAC runtime of 20.9%; response to security alerts improved by 48.9%; 

improved average navigation efficiency by 22.6%. This study presents, relative to the present models, a more 

comprehensive and adaptive digital twin model specifically designed for educational settings. This system 

supports real-time decision making and sustainability outcomes, providing a framework that can be scaled for 

digital transformation in higher education. This research adds to the existing pool of work emphasizing smart, 

intelligent and data-informed educational uses, connecting emerging technologies with university strategic 

planning. 
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I. INTRODUCTION 

The world of digital transformation has found its way to educational institutions, where more 

and more schools consider new technologies that allow them to improve campus management 

and the efficiency of its functioning and optimize the learning course, as a whole. The 

popularity of Digital Twin (DT) technology that is a real-time digital representation of physical 

assets, systems, or processes might as well rank among the most promising developments in 

this field. Previously, Digital Twins have been applied to industrial and urban planning realms, 

but they are now being adopted in the education realm as the agency of creating smart campus 

ecosystems [1]. A smart campus is an interconnected network of information, which can be 

buildings, energy systems, transport and human interactions through IoT (Internet of Things), 

AI (Artificial Intelligence) and cloud computing. In coming up with Digital Twins of such 

infrastructures, institutions manage to gain real-time visibility, data-driven decision making, 

and predictive analytics to facilitate strategic management [2]. This solution leads to effective 

energy consumption, space management, safety measures, and better interactions with students 

due to specific services. The study of the conceptual framework of the design and 

implementation of Digital Twins in education is examined [3]. It analyzes that in what way, 

these digital replicas can turn campus infrastructure into intelligent ecosystems that would 

facilitate strategic planning and sustainable growth. The major achievements are the following: 

a list of actual elements of a smart campus must be made, the importance of data 

interoperability should be evaluated, and real-life case studies presenting successful integration 

of DT have to be discussed. In addition, the paper explores the barriers and the opportunities 

of the adoption of Digital Twin technologies in higher-ed and include data privacy, 

technological capability, and change procedures. The study addresses the gap existing between 

the physical and digital environments and gives an ultimate picture of the research attempts to 

strive and deliver an academic organization that can be a responsive, adaptive, and intelligent 

ecosystem and align with a future-ready education objective. 

 

II. RELATED WORKS 

The creation of the smart campus ecosystems on the basis of the digital twin technology overlap 

with various research areas, such as sustainability, digital transformation, facility management 

and new technologies. The literature on this topic (collaborating systems) in the recent time 

has emphasized the importance of combined systems, which consider integration between 

educational objectives and smart and sustainable infrastructure. Digital twin use in sustainable 

campus setting is on the rise. As an example, Kalluri et al. [20] investigated the Indian net-zero 

energy campuses, displaying that governance and education may be united in order to 

contribute to climate neutrality. Their study highlights the opportunities in digital monitoring 

systems and governance structures in the process of attaining sustainable transitions. On the 

same note, Mahmoud et al. [25] present the idea of innovations in facilities management of 

higher education institutions by considering the benefit of smart building technologies and 

energy management systems to improve the level of operational efficiency. Such attempts meet 

the goals of digital twins frameworks, which includes having real-time replica of campus 

systems to facilitate strategic monitoring. A study founded on the concept of digitalization of 

smart cities may tell more. Jnr and Petersen [18] have confirmed a digital smart city enterprise 
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architecture framework that involved a mixed-mode methodology to evaluate its performance. 

The model is especially applicable because educational campuses tend to be microcosms of 

urban systems and, therefore, similar frameworks are required in order to implement them. 

Similarly, Mazzetto [26] concentrated on the adoption of the platform and the emerging 

technologies with in relation to the digital twins especially in heritage building conservation. 

The bibliometric expertise of the interdisciplinary approach provided in the current research 

highlights the versatility of digital twin models to be implemented into various fields such as 

the educational environment. In infrastructural point of view, Machele et al. [24] gave a 

thorough survey on smart microgrids, trading mechanisms, and energy management strategies. 

The article published by them stresses the importance of energy optimization models that may 

be adapted to campus-scale implementations, which supplement digital twin solutions 

dedicated to energy consumption prediction and load balancing. Kumar et al. [22] followed up 

by spelling out regenerative design in the context of indoor spaces, citing that digital twins may 

promote real-time monitoring of the environmental conditions in various places and responsive 

responses procedures. Regarding the socio-educational dimension, Karnavas et al. [21] 

suggested an application of a fuzzy multi-criteria decision-making model to the evaluation of 

the adoption of AI in maritime education with references to human-centered design in digital 

transitions. The human-centric nature of this technique is essential to adopting digital twin 

technologies in education because it helps to place innovations and technologies in education 

in line with pedagogical and user experience objectives. And, studies like that by Lucas et al. 

[23], that reported the cross-European training scheme in sustainable building design and 

practices also focused on training and stakeholder engagement. They emphasise on knowledge 

dissemination and gaining experience through it, thus showing us that user involvement has a 

crucial role in the overall success of the digital twin. Moreover, Elena et al. [15] explored the 

concept of living labs in connection with sustainable development, and the resulting trend 

supports the thesis that educational campuses could serve as test platforms during which the 

innovation of the present age could be experimentally tested in a real-time environment. 

Additional works are those of Fang et al. [16], though who examined stakeholder-based 

planning in rural tourism although introduced other transferable ideas of interest symbiosis and 

participatory planning, which can also be applicable to academia ecosystems. Also, Halder et 

al. [17] summarized the effects of urban greenery on thermal comfort that can be applied to the 

design of campus and environmental control systems. 

All these studies form a multidisciplinary basis where the present study on smart campus digital 

twins is constructed. They point at the possibility of convergence among sustainability, the 

field of technological innovation, and strategic management of education, thereby confirming 

the importance and the viability of the prospect of introducing intelligent digital ecosystems 

into the academic environment. 

 

III. METHODS AND MATERIALS 

This study uses a design science approach to build and evaluate a Digital Twin (DT) framework 

developed for the educational infrastructure of smart campus ecosystems. The goal is to 

replicate real-time operations, obtain an optimization of resources, and support governance 
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decisions. This chapter describes the data, algorithms, and methodological structure that aid in 

constructing the digital twin model, and evaluates it [4]. 

3.1 Data Collection and Simulation Design 

To simulate a smart campus ecosystem, we generated synthetic data representing real-life 

scenarios. We generated and collected synthetic data from a variety of subsystems, including: 

● Energy consumption (hourly in kWh per building) 

● Occupancy levels (students/faculty per classroom) 

● Temperature and humidity (for HVAC optimization) 

● Device connectivity logs (for IoT traffic analysis) 

● Security and access logs (entry/exit counts) 

The data generated simulates a mid-sized university campus with five main buildings with both 

daily activity logs over a 30-day period. The goal of using synthetic data is to protect privacy 

while maintaining the complexity and variation found in real campus operations [5]. 

3.2 Algorithms Used 

Four key algorithms were utilized to analyze and further optimize the operations of the digital 

twin each has a different functional objective to perform: 

1. K-Means Clustering – Room occupancy pattern detection 

2. Long Short-Term Memory (LSTM) – Energy consumption prediction 

3. A Search Algorith* – Path optimization for campus navigation  

4. Random Forest Classifier – Securitry risk determination from access logs 

Below are summaries of each algorithm. 

1. K-Means Clustering for Occupancy Pattern Detection (150 words) 

K-means clustering is an unsupervised learning algorithm used to find patterns in room 

occupancy based on timestamped data. The algorithm groups rooms at similar occupancy levels 

to distinguish underutilized versus overcrowded spaces. The input features of this algorithm 

are: time of day, day of the week, and room type. K-Means Clustering predicts occupancy for 

scheduling optimizations and HVAC control [6]. This algorithm runs as follows: initialize with 

k centroids, assign distance to the closest centroid, and repeat updating the centroids until 

convergence. 

“1. Choose k initial centroids randomly 

2. Repeat until convergence: 

    a. Assign each point to the nearest 

centroid 

    b. Recalculate centroids based on 

current clusters” 
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Table 1: Sample Clustering Output 

Clust

er ID 

Time 

Slot 

Avg 

Occupan

cy 

Room 

Type 

1 9 AM – 

11 AM 

95% Lecture 

Hall 

2 1 PM – 3 

PM 

50% Lab 

3 4 PM – 6 

PM 

25% Seminar 

Room 

 

2. LSTM for Energy Consumption Forecasting  

Long Short-Term Memory (LSTM) networks, a type of recurrent neural network (RNN), are 

appropriate time-series forecasting models. LSTM is suitable for this purpose because it has a 

memory cell structure that permits the learning of long-term dependencies. The model takes 

past energy usage, temperature, and building activity to predict energy demand for the next day 

[7].  

This forecasting of energy demand will inform energy-saving measures to be undertaken in 

addition to automating load-balancing of energy demands in smart buildings. The LSTM 

architecture is organized with input, output, and forget gates that control the information 

passing through the LSTM network. 

 

“1. Input sequence X = [x1, x2, ..., xn] 

2. For each time step: 

    a. Compute input, forget, and output 

gates 

    b. Update cell state C and hidden 

state H 

3. Output forecast y for next time step” 
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Table 2: LSTM Energy Prediction Example 

Date Actual 

Energy 

(kWh) 

Predicted 

Energy (kWh) 

2025-

06-01 

1250 1235 

2025-

06-02 

1320 1305 

2025-

06-03 

1200 1210 

 

3. A Search Algorithm for Campus Navigation (150 words)* 

A* (A-Star) algorithm is then used for optimal route finding across the smart campus. The A* 

algorithm finds the shortest and most efficient path from a source (eg. dormitory) to a 

destination (eg. classroom) while accounting for real-time variables like increased crowding 

density and blocked paths [8]. 

The A* algorithm utilizes a cost function: 

f(n) = g(n) + h(n) 

Where, g(n) is the cost of traveling from the start node to node n, and h(n) is the heuristic from 

n to the goal. A * maintains a list of open and unexplored nodes and chooses the node with the 

smallest cost. 

“1. Add start node to open list 

2. While open list is not empty: 

    a. Select node with lowest f(n) 

    b. If node is goal, return path 

    c. For each neighbor: 

        i. Calculate g, h, and f 

        ii. If not in open/closed list or better 

path found, update node” 

 

 

 

4. Random Forest Classifier for Security Risk Assessment 

The Random Forest algorithm is used as a detector of potentially anomalous access patterns 

suggesting a security risk (accidentally getting inside an authenticated user after hours). In 

practice, it can be viewed as a collection of decision trees created in such a way that each tree 

was trained on a unique but random subset of the dataset. The final prediction decision is made 

from majority voting [9]. 

Input features consist of access time, type of ID, frequency of access, and device. The final 

model is trained on the logs of access with 'Normal' / 'Suspicious' classifications. The ability to 
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withstand overfitting tendencies while inclusive of noisy data makes it ideal for real-time 

deployment in Digital Twin security modules [10]. 

“1. For N trees: 

    a. Draw bootstrap sample from 

dataset 

    b. Train a decision tree on sample 

2. To predict: 

    a. Run input through all trees 

    b. Use majority class as final 

output” 

 

 

 

IV. EXPERIMENTS 

4.1 Experimental Setup 

The experiments and data collection for this project were implemented in a digitally-enabled 

campus context. A simulated medium-sized university campus comprised of a few large 

buildings (Academic Block, Laboratories, Library, Cafeteria, and Administration) was 

developed over the span of 30 days. The data that was used, even though synthetic, was 

developed to mimic real-life varying operations and consisted of hourly energy consumption, 

real-time occupancy, indoor environment data (temperature and humidity), access control logs, 

and IoT devices' activity on campus [11]. 

The digital twin system was built with Python (for algorithmic modelling), MySQL (for data 

storage), Unity 3D (for simulation), and MATLAB Simulink (for infrastructure visualization). 

The algorithms used were modularized, making it easier for the different components to 

communicate and allow for real-time updates and decisions to be made. The digital twin 

framework was assessed for accuracy, efficiency, and strategic value using a mixture of 

quantitative metrics and comparative analysis using the existing body of digital twin literature 

[12]. 

 
Figure 1: “Intelligent Campus System Design Based on Digital Twin” 
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4.2 K-Means Clustering for Occupancy Pattern Analysis 

The K-Means algorithm successfully clustered daily occupancy into three groups based on each 

building's utilization patterns. The input parameters were time of day, room type, and 

occupancy count per hour. Optical cluster size was determined using the Elbow Method and 

the number of clusters was specified at k = 3; this allowed the team to define periods of high, 

medium, and low occupancy and to adhere to those utilization patterns [13]. 

The clustering method provided information about space utilization and helped administrators 

to adjust HVAC operations where applicable; thus reducing unnecessary cooling or heating 

during the low-use periods. The clustering model achieved a classification accuracy of 87% 

with an adjusted Rand index of 0.72 while processing 30 days of data took about 2.3 seconds. 

 

Table 1: Occupancy Cluster Results 

Cl

ust

er 

ID 

Occup

ancy 

Range 

Time 

Slot 

Roo

m 

Type 

Suggest

ed 

Action 

1 >85% 9 

AM 

– 11 

AM 

Lect

ure 

Hall 

Full 

HVAC 

Operati

on 

2 45–

70% 

1 PM 

– 3 

PM 

Labs Moderat

e 

Cooling 

3 <30% 4 PM 

– 6 

PM 

Semi

nar 

Roo

m 

Shutdo

wn 

HVAC 

 

4.3 LSTM for Energy Consumption Prediction 

A Long Short-Term Memory (LSTM) neural network was trained in order to forecast energy 

consumption. Historical data, including past energy consumption, occupancy, and temperature, 

were used to forecast the energy consumption for the following day, at each hour increment 

[14]. The LSTM network was trained for 100 epochs using mean squared error for a loss 

function. 

The model had a good forecast accuracy of 96.8%, a root mean squared error (RMSE) of 26.5 

kWh. The mean absolute percentage error (MAPE) was 3.2%, implying good generalization to 

other building types and energy uses. These predictions allowed energy to be scheduled 

strategically, capturing savings by managing loads at various temperatures and conditions [27]. 
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Figure 2: “Infrastructure digital twin technology” 

 

Table 2: LSTM Forecast Accuracy (Sample Days) 

Da

te 

Actual 

Energy 

(kWh) 

Predicted 

Energy 

(kWh) 

R

M

SE 

Jun

e 

10 

1250 1235 15 

Jun

e 

11 

1320 1308 12 

Jun

e 

12 

1195 1184 11 

4.4 A Algorithm for Campus Navigation Optimization* 

The A* search algorithm was utilized to simulate dynamic path finding using campus 

navigation software. The pathfinding software calculated the most suitable walking routes 

between buildings while considering constraints of real-time crowd density, construction 

locations and emergency routes. The A* algorithm achieved this with heuristics based on time 

efficiency and crowding data. It extended our capacity to address live conditions, unlike static 

shortest path algorithms (Dijkstra's) which did not offer a heuristic response [28]. The 

simulation results showed the average path cost and responsiveness dramatically improved by 

the use of the A* algorithm compared to Dijkstra's. The path queries had an average response 

time of 0.86 seconds and the dynamic routing accuracy of 94%. A dynamic routing capacity 

would enhance campus mobility during peak hours especially in a high risk emergency scenario 

[29]. 
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Figure 3: “A digital twin framework for innovating rural ecological landscape control” 

 

Table 3: A vs Dijkstra Comparison* 

Metric A* 

Algorith

m 

Dijks

tra 

Avg Path Cost 

(steps) 

86.3 103.2 

Response Time 

(seconds) 

0.86 1.33 

Routing Accuracy 94% 80% 

Support for Live 

Updates 

Yes No 

 

4.5 Random Forest for Access-Based Security Detection 

A Random Forest algorithm was also employed to classify access control data into normal and 

suspicious behaviors to enforce security on a university campus. The four independent 

variables for the algorithm were time of entry, type of ID, frequency of access, and the number 

of devices used. For the model, we provided data on anomalous behavior with labels, such as 

unauthorized access after hours and excessive entry to the access point. The algorithm provided 

a classification accuracy of 94.2%, with estimated precision of 93.1%, and a recall of 95.6% 

[30]. With an overall false positive rate of only 3.7%, it could also be suitable for front-end 

implementation into a live campus security guideline. 
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Figure 4: “Intelligent Campus System Design Based on Digital Twin” 

 

Table 4: Sample Security Classification Results 

Entry 

Time 

Access 

Mode 

Predi

ction 

Actu

al 

Outc

ome 

2:00 

AM 

Keycar

d 

Suspi

cious 

Suspi

cious 

True 

Positi

ve 

10:30 

AM 

Biomet

ric 

Norm

al 

Norm

al 

True 

Negat

ive 

11:45 

PM 

Keycar

d 

Suspi

cious 

Norm

al 

False 

Positi

ve 

3:15 

PM 

Keycar

d 

Norm

al 

Norm

al 

True 

Negat

ive 

 

4.6 Integrated Digital Twin Performance Evaluation 

Once all four algorithms were consolidated into the digital twin ecosystem, a full evaluation 

was possible as to their overall effect on campus outcomes. The digital twin model produced 

overall improved energy usage, occupancy management, navigation and risk management. The 

daily energy usage decreased by over 9%, the absolute average HVAC runtime decreased by 

21%, and the proactive identification of operational incidents sped up response times to 

mitigate risk. 
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Table 5: Performance Comparison – Pre vs Post DT Integration 

Metric Befor

e DT 

Afte

r DT 

Improv

ement 

Daily Energy 

Usage (kWh) 

1280 1160 -9.4% 

Avg Security 

Response Time 

4.5 

min 

2.3 

min 

-48.9% 

Average 

Navigation 

Time 

6.2 

min 

4.8 

min 

-22.6% 

Daily HVAC 

Runtime 

11 hrs 8.7 

hrs 

-20.9% 

 

V. CONCLUSION 

This research studied the design and implementation of a smart campus ecosystem with digital 

twin technology to optimize educationally-related spaces and assist with strategic management. 

The research combined state-of-the-art machine learning technologies including K-Means for 

occupancy analytics, LSTM for energy forecasting, A* for the wayfinding on campus, and 

Random Forest to detect access-based security issues, in order to demonstrate how digital twins 

could advance education from defined operations to intelligent systems. Experimentation 

utilized simulated data for 30 days to investigate energy efficiency, operational response times, 

space utilization, and security management. For example, over 9% reduced daily energy usage, 

over 20% reduced HRV runtime, and over 23% enhanced navigation efficiency were indicated 

through experimentation, in addition to the digital twins enhancing  more-integrated 

management practices. This research suggests substantial benefits to using digital twins in 

higher education beyond energy optimization, as digital twins could be used for enhanced 

campus resource optimization and reduced environmental impact for a more student-focused 

model of higher education. The comparison with previous studies shows that the integrated 

approach of this model is both innovative and effective. Previous studies explored dimensions 

of the problem by investigating smart energy systems, the digital security of campus IT 

infrastructures, or related energy sustainability issues. This study now provides an integrated 

framework with a multidimensional view to help academic institutions address these issues. 

While limitations remain in this study, including the synthetic nature of the data and limited 

biometric engagement, we believe that the study provides a foundation for future real-world 

deployments. In sum, the proposed model illustrates a future for how universities can evolve 

into smart, digitally governed, institutional campuses. Future development of the model can be 

expanded through real-time deployments, user-feedback integration, and cross-campus 

federated digital-twin systems to provide universities with better resiliency and strategic 

planning capacity. 
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