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Abstract: With the rapid proliferation of the Internet of Things (IoT) across various sectors, including healthcare, 

smart cities, and critical infrastructure. IoT networks face heightened cyber threats, especially Black Hole Attacks 

(BHA). These attacks disrupt communication by maliciously routing data packets into Black Holes (BH) within 

the network, rendering critical information inaccessible and severely compromising network reliability and 

security. As IoT applications increasingly underpin essential services, establishing robust mechanisms to ensure 

network integrity becomes imperative. This study offers a sophisticated security framework to identify and 

prevent BHA in IoT networks that make use of the Routing Protocol for Low-Power and Lossy Networks (RPL) 

in order to address this challenge. Using the excellent accuracy of a Multi-Layer Perceptron (MLP) Neural 

Network (NN) model, this framework is a Deep Learning (DL)-based detection system. The Integration of 

Explainable Artificial Intelligence (AI) (I-XAI) approach is a noteworthy aspect of the methodology. By 

incorporating XAI, the framework achieves high detection accuracy and provides interpretable insights into the 

model’s Decision-Making (DM) process, addressing the often-cited black box issue in DL. The explainability of 

our model aids security analysts in understanding the specific patterns and characteristics that contribute to black 

hole attack detection, enhancing the reliability of our solution in real-world applications. To fortify the detection 

mechanism, we enhanced the framework with Real-Time (RT) anomaly detection capabilities enabled by 

advanced Edge-Computing (EC) devices. This allows rapid identification and response to suspicious activity, 

reducing latency and minimizing network vulnerability. Additionally, the framework incorporates Federated 

Learning (FL), enabling decentralized model updates across IoT nodes while preserving data privacy, an essential 

feature for compliance with emerging data protection regulations. A critical addition to our framework is a Trust 

Evaluation Mechanism (TEM), which assesses the trustworthiness of IoT nodes based on their behavior and 

historical data. This mechanism helps in dynamically adjusting the network trust levels and improves the accuracy 

of Attack Detection (AD) by correlating anomalous activities with trust scores. This multi-faceted approach 

ensures robust, transparent, and adaptive protection against BHA in IoT environments. 

Keywords: RPL, XAI, Data Protection, Black Holes, Internet of Things, Attack Detection, Network, Trust 

Evaluation 

1. INTRODUCTION: 

IoT is a highly deployed mechanism, which has enormously made possible the opportunities 

of smart connection and its applications in a number of fields of human life [1]. It is most 

current widely accepted digital technology of communication, whose prime advantage is data 

transmission and communicative interchange among different smart devices without requiring 

humans by connecting other devices to the Internet and protocols [2]. By enabling actuation, 

sensing, and communication capabilities, intelligent nodes in IoT networks enable humans to 
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lead active and creative lives [3]. From basic smart home gadgets to networked industries and 

intricate intelligent grids, the Internet of Things has a wide range of uses [4]. A node in an 

Internet of Things network can do three things: gather, send, and process data [5]. The data 

collecting process uses sensors that are tiny, have little memory, and use less energy to data 

transmission [6]. 

The Internet Engineering Task Force introduced RPL as a routing method for LLNs, or 

low-power and lossy networks [7] . It is widely accepted as the gold standard protocol for IoT 

networks [8]. To facilitate communication between IoT devices and meet the needs of those 

devices with certain limitations, this protocol was developed [9]. Minimal-Level Networks 

contain devices with less memory, less processing power, and minimal battery backup operated 

resources [10]. Low packet delivery rates, lossy connections, instability, and poor data speeds 

are common among the few devices that make up IoT networks [11]. A number of networking 

contexts have proposed the RPL routing method, such as smart grids, cities, households, and 

businesses [12].  

Besides communication disruption, an RPL black hole attack can lead to resource 

wastage and significant data loss other than the severe consequences of reducing the network 

speed sharply [13]. These interferences can be utilized by cyber-hackers to conduct far more 

sophisticated attacks or snatch personal information [14]. An RPL black hole attack is almost 

impossible to detect as the attacks are generally made in the form of ignoring the data packets 

rather than modifying them [15]. Traditional security cannot identify altered or corrupted 

packets while detecting the black hole attacks [16]. Detection schemes are to be focused on 

monitoring the control message flow inside the network. Consistency in tracking the timeliness 

should be maintained [17]. IoT networks can be attacked using complex Denial of Service by 

exploiting the security holes in the RPL protocol itself as a black hole attack. This protocol 

should be accompanied by creating and implementing mitigation and detection procedures to 

ensure the networks continue to function properly in IoT networks [19]. 

Motivation: The problem of black hole attacks in IoT networks poses significant security 

problems that lead to serious threats in dependability and safety of important services, 

motivating this research work. We try to design a detection framework based on advanced deep 

learning along with Explainable AI, federated learning, and trust evaluation to achieve secure, 

adaptive, and privacy-compliant environments for IoT-driven applications in smart cities and 

other sectors. The mechanisms of deploying the detection framework in RT to interpret the 

decentralized protection of IoT networks are aligned with the objectives. 

Problem Statement: Attacks on black holes, which destroy the accessibility of data and 

stability of networks, are one of the very serious cyber threats that vital industries are 

increasingly facing with the growth of IoT networks. Current methods lack areas such as real-

time detection, interpretability, and privacy protection. This study fills those knowledge gaps 

by developing a federated framework to identify and mitigate IoT black hole threats, which is 

explainable and built on top of DL. 
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Contribution of this Study: 

• Developed a DL-based framework using MLP to detect BHA in IoT networks using minimal 

error and superior accuracy. 

• Incorporated I-XAI for transparency, enabling analysts to interpret the model’s decision-

making when detecting IoT black hole attacks. 

• Leveraged edge computing and federated learning for real-time anomaly detection to maintain 

data privacy across IoT nodes. 

• Introduced a trust evaluation mechanism to assess the trustworthiness of IoT nodes, enhancing 

the detection accuracy by correlating anomalous activities with trust scores. 

The remaining of this study is structured as follows: In Section 2, the Detecting BHGA in RPL 

Protocol is studied. In Section 3, the suggested method of I-XAI is explained. In Section 4, the 

efficiency of I-XAI is discussed and analysed. The study concludes with future work in Section 

5. 

Related Works: 

The network is unable to keep its structure and route data efficiently due to the attackers 

activities, genuine nodes are unable to communicate with each other. In addition to disrupting 

communication, an RPL black hole attack may cause significant data loss, resource waste, and 

a noticeable drop in network speed, among other serious consequences. Intruders could use 

these interruptions as a springboard for a more sophisticated cyberattack or to steal important 

information.  

Machine Learning (ML) based Black Hole Attacks in RPL Protocol (ML-BHA-RPL): 

New attacks like BotenaGo demonstrate that existing security solutions are inadequate 

to prevent the propagation of IoT assaults, despite the fact that IoT security is a well researched 

topic. Protecting against these types of assaults might be made easier with the use of ML 

approaches. In this study, three supervised ML (SML) methods are trained and evaluated to 

detect rank and BH risks in RPL-based IoT networks. To build a dataset and find the right fields 

to train the ML model, we conduct extensive assault simulations by Ioulianou, P. P. et al., [20]. 

The anamoly detection is very less by 37.89% in ML-BHA-RPL. 

Black Hole Detection using Blockchain (BHD-BC): 

Robust security measures are required to safeguard important sectors including 

healthcare, smart grids, and intelligent transportation systems from cyber attacks, due to the 

growing dependence on cyber-physical systems. The availability and integrity of CPSs are 

particularly vulnerable to vulnerabilities like blackhole and greyhole assaults by Javed, M. et 

al., [21]. Ineffective protection is a common result of the present detection and mitigation 

techniques inability to properly distinguish between legal and harmful activities. The detection 

accuracy is low by 35.47% in BHD-BC. 
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Intrusion Detection System (IDS) for RPL Attack (IDS-RPL): 

As the number of devices linked to the internet via IPv6 continues to grow, the 

importance of the IoT becomes more apparent. Due to their low processing power, memory, 

and energy resources, LLN Routers used in an IoT context are unable to employ conventional 

Routing Protocols (RP) like Open Shortest Path First and Routing Information Protocol. But 

one of the most well-known protocols designed to circumvent these problems is RPL, or RP 

for LLN by Raghavendra, T. et al., [22]. However, RPL is susceptible to a number of assaults, 

including version, BH, sinkhole, selective forwarding, and lowered rank. The error rate is poor 

in IDS-RPL by 43.85%. 

Artificial Neural Network based Attack Detection (ANN-AD):  

The RPL protocol is a lightweight and easy-to-understand routing system for IoT 

networks that are power-efficient and suffer from loss. RPL-based IoT networks are susceptible 

to a variety of security risks because of their restricted capabilities. In RPL, a BHA is among 

the worst dangers. An IDS against BHA with ANNs is suggested in  InTrusion Detection and 

Eviction. The suggested IDS uses Dempster-Shafers theory of evidence by Prajisha, C. et al., 

[23] to combine information from many watchdog nodes in order to calculate the likelihood of 

an attacking node.  

RPL based Convolutional Neural Networks (RPL-CNN): 

Objects that we use on a daily basis are undergoing a metamorphosis because of the 

IoT. The devices are vulnerable to security breaches because of their low memory, computing 

power, and network capabilities. Despite its potential, the IoT protocol known as RP for LLN 

encounters formidable security obstacles by Shahid, U. et al., [24]. Much of the current 

literature addresses specific assaults, using different mitigation tactics including deep learning 

and machine learning for detection. Examining characteristics of network traffic spanning all 

four assaults, the research makes use of statistical information graphs. The network security 

rate is low by 48.32% in RPL-CNN. 

Attack Detection (AD) by Support Vector Machine (AD-SVM): 

An IoT network type known as Low-Power Lossy Networks allows devices to 

communicate with one another and carry out a variety of functions without human intervention. 

The most popular RP for LLNs is the RPL, which stands for LLN. The use of IoT devices as a 

botnet in assaults on Internet infrastructures has recently skyrocketed (IoT botnet). To train the 

ML framework for IDS, the raw data gathered from simulations is first preprocessed and then 

tagged by Keipour, H. et al., [25]. High latency rate by 70.41% in AD-SVM. 

 

 

 

 

 

Table 1: The Comparison of Exiting Methods 
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S. No Methods Advantages Limitations 

1 ML-BHA-RPL Detects black hole and rank 

attacks using ML; evaluates 

multiple algorithms for better 

accuracy 

High computational 

resource needs; May 

require frequent retraining 

due to IoT network 

dynamics 

2 BHD-BC (Blockchain-

based) 

Enhances data integrity and 

trust; suitable for critical 

sectors like healthcare and 

smart grids 

High energy and storage 

requirements; blockchain 

can introduce latency 

3 IDS-RPL Customizable IDS for IoT; 

tailored for LLN 

Limited scalability; May 

struggle with high attack 

traffic or new, unknown 

threats 

4 ANN-AD (Artificial 

Neural Network) 

Uses ANN and Dempster-

Shafer theory for effective 

detection; handles data 

uncertainty 

Requires large datasets; 

ANN model can be a “black 

box” without 

interpretability 

enhancements 

5 RPL-CNN (Convolutional 

Neural Network) 

Leverages CNNs for high 

accuracy in detecting diverse 

IoT threats; processes complex 

network features 

High computational cost; 

may not perform well in 

real-time on resource-

limited IoT devices 

6 AD-SVM (Support Vector 

Machine) 

Effective for binary 

classification; robust detection 

of IoT botnet-related threats 

Limited scalability for 

multiclass attack detection; 

SVM models can struggle 

with high-dimensional data 

In summary, RPL-based IoT networks are susceptible to black hole attacks; nevertheless, 

emerging threats like BotenaGo have shown that these countermeasures are inadequate. 

Scientists have come up with a number of ML methods such as ANN, SVM, and CNN to 

improve the detection of attacks in IoT networks. In low-power IoT settings, these methods aid 

in the mitigation of black hole and associated dangers by increasing the precision with which 

harmful actions are identified. 

2. PROPOSED METHOD: 

There are so many devices involved in IoT applications and so much data produced by 

sensors, which is difficult to design a system that can withstand assaults. Ensuring the security 

of data transmission in the IoT requires the use of intrusion detection methods. As security 

measures, Intrusion Detection Systems (IDSs) keep an eye out for suspicious activity and 

identify any attempts at intrusion. 

 

Contribution 1: Deep Learning-Based Detection with Explainable AI (XAI) Integration 
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IoT security systems should be able to probe packets across several IoT network levels 

using a variety of security technologies and protocol stacks. Systems will be protected by 

deploying Intrusion Detection Systems (IDSs) in IoT communication networks, which will 

monitor and scan harmful packets. 

 

Figure 1: The Process of Black Hole Attack 

Figure 1 shows an RPL protocol black hole attack on an Internet of Things network. 

Nodes 1–9 are linked in the left-hand figure, with node 1 serving as the root. Because of the 

intrusion, node 4, shown in red, is now discarding all incoming packets rather than forwarding 

them. Therefore, nodes 7, 8, and 9 are cut off from the rest of the network and end up isolated. 

Node 4s malevolent behaviour and its persistent packet drops leads to the disconnection of 

nodes 7, 8, and 9, as seen in the right-hand figure. The need for a strong detection and mitigation 

architecture to avoid these types of assaults and keep the network intact in IoT applications is 

highlighted by the fact that this interruption lowers the networks accessibility and 

dependability. 

𝑐𝑝 =>  𝑍𝑟 ≪ 𝑘 − 𝑤𝑡′′ ≫  + 𝑀𝑝(𝛿 + 𝜀𝑣′′)     (1) 

Equation 1, 𝑍𝑟 represents metrics for the network in real time, while weight 

modifications based on trust scores 𝛿 + 𝜀𝑣′′ and anomaly detection outputs are taken into 

consideration by 𝑘 − 𝑤𝑡′′ and 𝑀𝑝. This equation improves the accuracy and flexibility of the 

security framework based on deep learning by optimizing attack detection. 

𝑓𝑣′ → 𝑀𝑛|𝐿 − 𝑣𝑓′′|: → 𝑁(∀𝑅𝑓 − 𝑇(𝑧𝑐 − 𝑝𝑞𝑡′′))  (2) 

Initial feature vectors are represented by the equation 2 𝑓𝑣′, and variations 𝐿 − 𝑣𝑓′′ in 

node behavior 𝑁, associated ∀𝑅𝑓 − 𝑇 with attack detection 𝑧𝑐 − 𝑝𝑞𝑡′′, is quantified by 𝑀𝑛. 

By analyzing trust and network behaviors, this equation helps to refine the detection process, 

making it easier to accurately identify black hole assaults using dynamic data and trust 

assessments. 

∝ 𝑇 → 𝑁(𝜕 −∪ 𝑓𝑡′′): −∀𝜕(∝ −𝑊𝑞𝑏′′)  (3) 
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The trust level of IoT nodes is represented by equation 3 𝜕 −∪ 𝑓𝑡′′, and the effect of 

anomalous behavior 𝑁 on trust scores is quantified by ∝ 𝑇, which guides the detection 

procedure. By combining trust : −∀𝜕 and anomaly data ∝ −𝑊𝑞𝑏′′, this equation 3 aids in the 

dynamic adjustment of trust levels in response to node activity in real-time, which improves 

the detection and mitigation of BHA. 

 

Figure 2: Edge Computing-Enabled IoT Security Framework for Real-Time Malware 

Detection and Classification 

Figure 2 depicts an edge computing-based IoT security architecture that detects and 

classifies malware. IoT devices make connections to a central module located within the edge 

network layer, using an Edge Gateway to route input from devices on the left side. This module 

uses Spark Streaming, Deep Learning, and Heuristic Optimization for the real-time processing 

of data, threat identification, and efficient resource allocation. The above figure invokes the 

model Intrusion and Threat Detection (ITD) through distributed processing by edge nodes, 

which are Nodes 1, 2, and all the way up to Node N. An edge server is forwarded classifications 

of threats that have been detected and enhanced to further enhance network security as a whole. 

This architecture enhances the resilience of IoT networks by allowing decentralized, real-time 

processing at the periphery of the network and ensures timely mitigation of threats. 

∝ 𝑣: → 𝐷(∪ 𝑟−< 𝑇𝑦𝑟′′ + 𝜀∆′′>) − 𝑋𝑧{𝛿𝜎 + 𝜏𝜌′′}  (4) 

Equation 4, ∝ 𝑣 represents the data flow velocity, ∪ 𝑟−< 𝑇𝑦𝑟′′ is the data processing 

function 𝐷, and 𝜀∆′′ takes trust and anomaly factors 𝑋𝑧 into consideration. Combining aspects 

of network data with trust assessments {𝛿𝜎 + 𝜏𝜌′′}. The equation guarantees real-time adaptive 

decision-making by improving attack detection accuracy while minimizing false positives. 

∝𝜕 (𝛿 + ∇∃′′): →  𝜇𝜋{𝜏 − 𝜑𝜔′′} + 𝛿𝛽(𝜇 − 𝜋𝑝′′)  (5) 

The dependence of trust scores 𝜇 − 𝜋𝑝′′ and attack indicators is represented by ∝𝜕 and 

the equation 5, (𝛿 + ∇∃′′): →  describes the dynamic adjustment  𝜏 − 𝜑𝜔′′ of trust depending 

on data anomalies 𝛿𝛽. By taking trust dynamics and observed anomalies into account, this 
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equation helps to refine the deep learning model, guaranteeing an accurate, adaptable, and 

resilient detection framework for IoT security. 

𝜀𝛿𝑝′′ [
2𝑝

∇ − ∆𝑚′′
] : → (

2𝑟

𝑝∇′′
+ 𝛿𝜀′′{𝛼 + 𝜋𝜇′′})  (6) 

Equation 6 measures the influence of trust 
2𝑝

∇−∆𝑚′′ and anomaly data 𝜀𝛿𝑝′′ on attack 

detection, and equation 
2𝑟

𝑝∇′′ shows how these variables affect network behavior 𝛿𝜀′′. By 

including trust assessments, contextual elements {𝛼 + 𝜋𝜇′′}, and real-time anomaly data. This 

equation improves the deep learning models capacity to identify black hole assaults, leading to 

faster and more accurate detections. 

Summarizing, real-time malware recognition and categorization using deep learning, 

heuristic optimization, and edge computing is possible with the help of Spark Streaming of an 

IoT security system. By handling attacks locally, distributed edge nodes improve network 

resilience, guarantee efficient and rapid threat mitigation. 

Contribution 2: Real-Time Anomaly Detection with Edge Computing 

A variety of scenarios, such as limited battery backup, poor processing capabilities, 

processing enormous amounts of data, and the rapid reaction of IoT communication networks, 

should be able to operate intrusion detection systems. There are three levels to the functions of 

an intrusion detection system. Using HIDS and NIDS, it first checks incoming network packets 

for intrusions.  

 

Figure 3: DL-Based Model for Detecting BHA in RPL Protocol 

To improve security, especially against black hole attacks, Figure 3 shows a complete 

and safe foundation for an IoT network. Data is generated by IoT sensors and devices and sent 

via Gateways and Edge Computing Nodes. These nodes use the IoT-specific routing protocol 
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RPL, which is based on IPv6. To prepare the data for future study, it is collected and 

preprocessed. The anomaly detection module and the black hole assault detection module are 

designed to work in tandem to detect and wipe out such threats. An important part of this 

architecture has been the integration of XAI, hence providing visibility to the decision-making 

process. Feature extraction, deep learning-based training, as well as decision-support 

visualization, guarantees that the framework will ensure secure, open, and efficient protection 

of IoT networks. 

∀𝛿(∈ +∆𝑛′′{𝜌𝜎 + 𝜑𝜔′′}): →  𝜗𝜇{𝜀 + 𝛽𝛾𝑡′′}  (7) 

The global effect of trust ∈ +∆𝑛′′ and anomaly data 𝜀 + 𝛽𝛾𝑡′′ is shown by the equation 

∀𝛿, and the interplay of network characteristics 𝜗𝜇 with identified anomalies is modeled by 

∆𝑛′′{𝜌𝜎 + 𝜑𝜔′′}. By enhancing the models detection efficiency and accuracy, equation 7 adds 

to the framework by making sure that trust assessment and anomaly detection collaborate to 

provide a strong framework. 

𝜕{𝑇𝑦′′ + 𝑝𝑓}: →  ∀𝑛′′[∝ +∇𝐸] − 𝑍𝑎𝑏′′  (8) 

Equation 8, 𝜕 depicts the handling of trust data and features, n 𝑇𝑦′′ + 𝑝𝑓 illustrates the 

incorporation of energy-efficient characteristics ∀𝑛′′ and network behaviors ∝ +∇𝐸. A more 

adaptable 𝑍𝑎𝑏′′ and accurate response to black hole assaults and overall network security. 

Including both trust dynamics and energy concerns in this equation, which boosts the deep 

learning model. 

 

Figure 4: Black Hole Attack Detection Framework for IoT Networks Using Deep 

Learning and PCA 

Black hole attacks in IoT networks can easily be detected and identified using the 

organized technique as seen in Figure 4. A model of both the IoT network and potential attacks 

against the network is done first, including benign traffic and malicious block-hole attacks. The 
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gathered traffic data is balanced, normalized and feature extracted based on pertinent attributes 

to improve it before analysis. It feeds into the processed attack detection optimized MLP deep 

learning model for training. Thus, classification uses the learned patterns to distinguish 

legitimate nodes from potentially an attacking node, where the type of assault may be 

determined after successful detection. With a combination of simulation, data preprocessing, 

feature extraction, and complex machine learning capabilities, it provides a reliable solution 

for proactive mitigations in IoT networks against black hole attacks. 

𝐷(𝜀 − 𝛾𝛽′′): →  ∇∃(𝜏𝜑(𝜋𝜌 + 𝜇𝑤′′)) − ℵ𝜗′′  (9) 

Data anomalies are processed by the term 𝐷(𝜀 − 𝛾𝛽′′), and the interplay between trust 

metrics 𝜏𝜑(𝜋𝜌 + 𝜇𝑤′′) and discovered anomalies is modeled by ∇∃. This Equation 9 lends 

credence to the model by facilitating better anomaly detection, which in turn improves the 

detection of black hole assaults. 

𝜕𝑉{𝐿𝑝 − 𝑇𝑦{𝑁𝑜𝑡′′ + 𝑃𝑏}}: → 𝑄𝑧{𝑛 − 𝑏𝑡𝑟′′}  (10) 

The impact of network anomalies 𝑁𝑜𝑡′′ + 𝑃𝑏 and possible attack 𝑄𝑧 indicators is 

captured by the equation 𝜕𝑉, and attack detection is adjusted by 𝐿𝑝 − 𝑇𝑦 using trust and 

anomaly metrics 𝑛 − 𝑏𝑡𝑟′′. By combining trust-based anomaly detection with real-time 

network activity analysis, equation 10 improves the accuracy of attack detection inside the deep 

learning-based framework. 

𝜀2{∇ + 𝜔𝜌}: →  𝜏𝜇𝜋{𝛿 + 𝜀𝛼′′}+∋ ∇′′ (11) 

Based on these assessments, the Equation 11, n 𝜀2{∇ + 𝜔𝜌} modifies detection, 

whereas 𝜏𝜇𝜋 depicts the effect of feature gradients 𝛿 + 𝜀𝛼′′ and network anomalies ∋ ∇′′ on 

trust evaluations. With the help of real-time anomaly processing and dynamic trust updates, 

where equation strengthens the frameworks attack detection mechanism, making it better able 

to spot black hole assaults. 

𝜔2||{𝜀𝛿(𝜏 − 𝑟𝑡′′)}: →  𝐸(𝜌𝜎′′ + 𝛼𝛽𝑣′′)  (12) 

While 𝜔2||{𝜀𝛿(𝜏 − 𝑟𝑡′′)} represents the contribution of network characteristics 𝜌𝜎′′ + 

and trust metrics 𝛼𝛽𝑣′′ to improve attack detection, the equation 𝐸 depicts the effect of 

identified anomalies on network trust. This Equation 12 bolsters the system by integrating 

anomaly signals and adaptive trust updates to improve real-time detection capabilities. 

It preprocesses data and applies principal component analysis to come up with a model for IoT 

networks traffic. Then nodes classify using the MLP model; this improves the security and 

dependability of IoT networks since black hole attacks are detected and recognized. 

Contribution 3: Federated Learning with Trust Evaluation Mechanism 

RPL routing mechanism is formulated by the IETF and it is based on LLN. It is widely 

accepted as an effective common procedure of Internet of Things network. It was designed 

with the purpose to enable communication across IoT devices as well as satisfy certain 

limitations of the needs of those devices. The resources are intended to be operated with 

minimal battery backup while they are included in LLNs along with devices that have 

constrained memory and decreased processing power. 
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Figure 5: Advanced IoT Security Framework 

This improved security framework developed against cyber dangers such as black hole 

attacks can protect IoT networks. This framework features in IoT networks employing the RPL 

routing protocol. The mechanism used in this framework has a trust assessment level over past 

actions and data from nodes in determining how trustworthy they are. Federated learning also 

comes with a benefit in the sense of model updates decentralization over IoT nodes that protect 

data privacy and allow for an immediate response to threats. Anomaly detection units apply 

edge computing for the actual detection itself, feeding into a Multi-Layer Perceptron-based 

deep learning model that identifies suspicious activity. To facilitate the better understanding of 

attack patterns for analysts, the XAI module incorporates interpretability. This integrated 

system ensures integrity for an IoT network that effectively interprets, decides, and proactively 

mitigates the threats shown in Figure 5.  

𝑁𝑘.𝑃{𝑤𝑄(𝐿 − 𝑂𝑇′′)}: → 𝑠𝑓 < 𝑉 − 𝑧𝑡′′ + 𝑥𝑍 >    (13) 

The network behavior 𝑠𝑓 and processing of anomalous data 𝑤𝑄(𝐿 − 𝑂𝑇′′) are adjusted 

using the equation 𝑁𝑘.𝑃, and detection is refined using real-time feature analysis and trust 

updates by 𝑉 − 𝑧𝑡′′ + 𝑥𝑍. By including anomaly patterns and network performance, this 

Equation 13 enhances the deep learning model, making black hole attack detection in IoT 

contexts more accurate and efficient. 

𝑉𝑓{𝑛. 𝐿 < ∀[𝜕 − 𝑟𝑡′′] >}: → 𝑁𝑣{∀ − 𝑡𝑟𝑞′′}  (14) 

The processing of network behavior ∀[𝜕 − 𝑟𝑡′′] and anomaly data is represented by the 

Equation 14, 𝑉𝑓, and the integration of these components 𝑁𝑣 impacts trust-based decision-

making for attack identification ∀ − 𝑡𝑟𝑞′′, according to the equation 𝑛. 𝐿. By allowing for 

feature-based anomaly detection and dynamic trust updates, this equation improves the deep 

learning model and allows for the exact detection of black hole assaults. 

𝜕𝑣(𝑃𝑙 − 𝑤𝑠 < 𝐾 − 𝑝𝑞𝑏′′ >): → 𝐵𝑧 < 𝑙𝑝 − 𝑤𝑞𝑡′′ >   (15) 

By analyzing 𝐵𝑧 the networks performance and behavior 𝐾 − 𝑝𝑞𝑏′′, the detection 

process is improved via the equation 𝑃𝑙 − 𝑤𝑠, which represents the link 𝜕𝑣 between network 

properties and probable attack indications 𝑙𝑝 − 𝑤𝑞𝑡′′. This Equation 15 improves the model 

by including trust-based assessment and real-time network data, making it better at detecting 

black hole attacks and increasing network security. 



Eksplorium p-ISSN 0854-1418 

Volume 46 No. 1, May 2025:  146–167 e-ISSN 2503-426X 

157 

 

𝜕2𝑃 < 𝑌𝑢′ + 𝑝𝑣 >: → 𝐸(𝐵2, 𝑄(𝑝 − 𝑣𝑡′′) + 𝑟𝑣)  (16) 

The impact of trust modifications 𝐵2, 𝑄 and dynamic network characteristics 𝑝 − 𝑣𝑡′′ 

are represented by the equation 𝑌𝑢′ + 𝑝𝑣, and the improvement of attack detection 𝑟𝑣 via trust-

based assessment 𝐸 and real-time data analysis is represented by 𝜕2𝑃. This Equation 16 

enhances the framework that relies on deep learning by including trust dynamics and anomaly 

detection. 

|𝑝(𝐵(𝑙 − 𝑝𝑞′′))|: → 𝐶𝑣|𝜕[𝑃𝑡𝑦 − 𝑣𝑓′′]| + 𝑍𝑥𝑝   (17) 

The processing of network characteristics 𝐶𝑣 and attack indicators 𝑃𝑡𝑦 − 𝑣𝑓′′ is 

represented by the equation 𝐵(𝑙 − 𝑝𝑞′′), and the detection process 𝑍𝑥𝑝 is refined by adding 

real-time network data and trust metrics by 𝑝. This Equation 17 improves the model by 

including adaptive trust assessment and anomaly detection algorithms, which allow for more 

precise detection of black hole assaults. 

𝐾(𝐵𝑛(𝜕𝑇′ − 𝑃𝑣′′)): → 𝑁𝑓{𝛿 + 𝜀𝜔′′ − 𝐸𝑧𝑥′′}  (18) 

The impact of trust updates 𝐾 and network features on anomaly detection 𝑁𝑓 is 

represented by the equation 𝜕𝑇′ − 𝑃𝑣′′, and the detection process 𝛿 + 𝜀𝜔′′ is improved by 𝐵𝑛 

via the integration of trust assessment 𝐸𝑧𝑥′′ and real-time feature analysis. Through dynamic 

trust-based decision-making and anomaly identification, Equation 18 improves black hole 

attack detection, which in turn helps the deep learning architecture. 

|𝐸𝑟(∝ +𝜕𝑝′′)||: →  
2𝜕

𝑣′′
+ [𝛿𝜀′′ + 𝑃𝑓] − 𝐸𝑐𝑥′′  (19) 

The function 𝐸𝑟(∝ +𝜕𝑝′′) modifies the detection process by including trust 

assessments and real-time feature analysis 𝛿𝜀′′ + 𝑃𝑓, whereas the equation 
2𝜕

𝑣′′ represents the 

identification of abnormalities 𝐸𝑐𝑥′′ in network behavior. This Equation 19 combines anomaly 

signals with dynamic trust assessments to enhance black hole attack detection. 

4𝑅𝑡(𝐿 − 𝑝𝑞′′): → 𝐵𝑥[∀ − 𝑃𝑡𝑦{𝛿 + 𝜀∆′′}]  (20) 

The study of network behavior 𝐵𝑥 and anomalies 𝛿 + 𝜀∆′′ are represented by the Equation 

4𝑅𝑡(𝐿 − 𝑝𝑞′′) and the attack detection is improved by adding dynamic trust levels and real-

time data modifications to ∀ − 𝑃𝑡𝑦. Equation 20 incorporates trust-based judgments and real-

time anomaly identification to enhance the accuracy of black hole assault detection. 

This Internet of Things security architecture makes it easier to protect RPL networks 

against black hole attacks with efficient and interpretable threat mitigation by combining XAI, 

deep learning, federated learning, real-time anomaly detection, and trust assessment.. 

 

3. RESULT AND DISCUSSION: 

The frameworks performance in identifying black hole attacks IoT networks in this part. It 

draws attention to several things, such as latency, network security, error rates, detection 

accuracy, and anomaly detection. The platform guarantees quick, accurate, and dependable 
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attack detection using superior deep learning models like MLP, which are augmented by 

Explainable AI (XAI) and edge-computing. 

Dataset Description: The most current dataset, BoTNeTIoT-L01, includes nine IoT devices 

whose traffic was captured using Wireshark on a local network that was connected to a central 

switch, where two Botnet assaults are part of it. There are 23 characteristics in the dataset that 

were artificially generated using statistical methods and pulled from the files. Over a 10-second 

frame with a decay factor of 0.1, seven statistical measures were calculated. Count of packets, 

jitter, size of outgoing packets alone, and size of both incoming and outbound packets together 

were four characteristics collected from the “.pcap” file. There were a total of twenty-three 

features, with three or more statistical measures calculated for each of the four characteristics 

[26]. 

Table 2: The Simulation Environment 

Metrics Description 

Simulator Contiki-Cooja 

Total Simulation Time 1800 Seconds 

Mote Type Tmote Sky 

Range of Interference 100m 

Protocol RPL 

Network Topology Random, Grid, or Tree-based topology with varying node 

densities 

Number of Nodes 50, 100, 150, and 200 nodes 

Node Distribution Random distribution within a defined simulation area 

Detection Model MLP NN for detecting BHA 

Edge Computing Simulated edge devices to facilitate real-time anomaly detection 

and response 
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Figure 6: Analysis of AD 

Anomaly Detection (AD) is going to be one of the important components which will 

eventually form our framework for early activity identification of suspicious behaviors 

indicating black hole attacks. Our model monitors the real-time network behavior to track the 

deviations in normal patterns of data flows with the help of sophisticated edge-computing 

devices that are explained in equation 21.  

4𝑙(𝑛 − 𝑟𝑡′′): → 𝑍{∀√𝑝𝑙 − 𝑣𝑓′′} + 𝛿𝛽{𝑙 − 𝑤𝑡′′}  (21) 

The network behavior assessment is given by the equation 21, 4𝑙(𝑛 − 𝑟𝑡′′), and the 

attack detection is improved by using real-time feature analysis 𝛿𝛽{𝑙 − 𝑤𝑡′′}  and dynamic 

trust metrics in the equation 𝑍{∀√𝑝𝑙 − 𝑣𝑓′′}. This Equation 21 improves the systems 

responsiveness and accuracy integrating adaptive trust assessments with network anomaly 

identification on the analysis of anomaly detection. 

For machine learning-based MLP, this framework identifies anomalies based on packet 

forwarding rates, node responses, and communication patterns. Explainable AI enhances this 

process, and thus, security analysts can interpret detected anomalies and understand the attack 

signatures underlying them as shown in figure 6. The improvements in decision-making 

generate faster and more accurate responses to threats while decreasing false positives in real-

world applications. The anomaly detection ratio of 96.64% is achieved in I-XAI. 
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Figure 7: Analysis of detection accuracy for BHA 

In Figure 7, depicts a very high accuracy rate of BHA detection in IoT networks, 

primarily because our model, the Multi-Layer Perceptron model, captures highly unique 

behavioural patterns of malicious nodes and separates them with very few false positives from 

normal legitimate network activity is explained in equation 22.  

4𝑟{𝐿 − 𝑝𝑟𝑣′′}: → 𝐽ℎ{𝜀 + 𝑎𝑏′′} − ∇∃{𝛾 − 𝑞𝑟′′}  (22) 

The assessment of network characteristics and attack patterns is modeled by the equation 

4𝑟{𝐿 − 𝑝𝑟𝑣′′}, and the detection process −∇∃{𝛾 − 𝑞𝑟′′} is refined by adding real-time data 

analysis and dynamic trust metrics in the equation 𝐽ℎ{𝜀 + 𝑎𝑏′′}. This equation 22 enhances the 

systems responsiveness and accuracy in detecting on the analysis of detection accuracy for 

black hole attacks. 

The integration of XAI strengthens the accuracy of detection even further by enabling 

analysts to understand the reasoning process of the model, thereby sharpening it and building 

robustness into the decision-making process. Our framework proved that it outperformed 

traditional methods of detection, but in particular conditions of the network, namely complex 

attack conditions, reliable and consistent results across different IoT environments and attack 

scenarios are expected. The detection accuracy is improved by 97.47% in I-XAI. 
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Figure 8: Analysis of Error Rates 

The error analysis of our framework has been conducted in reducing the False Positives 

(FP) and the False Negatives (FN) caused by BHA in IoT networks. The use of an MLP model 

with Explainable AI balances the approach to detection as it minimizes the probability of wrong 

classification. Since the model is interpretable, analysts would be able to validate the actual 

threats, and therefore, the number of false positives caused by benign nodes is minimized in 

equation 23.  

𝑓𝑡 → 𝑁{∝ 𝑡𝑟′′+∋ [∇ − ∀𝑡𝑟′′]} + 𝑉𝑥𝑤′′  (23) 

Equation 23 𝑓𝑡 → 𝑁, and ∝ 𝑡𝑟′′+∋ stands for the identification of network trust 

abnormalities which incorporates the real-time data analysis 𝑉𝑥𝑤′′ to identify attacks even 

more effectively. This equation enhances the detection of black hole attacks by merging 

assessments of network trust with real-time anomaly analysis of error rates. 

Meanwhile, false negatives missed black hole attacks are minimized by continuously 

refining the model with real-time data from edge-computing devices. Hence, this approach 

provides assured detection reliability and improved overall network resilience by identifying 

and mitigating malicious activities quickly. The error rates are obtained by 97.36% is shown 

in Figure 8. 
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Figure 9: Analysis of network security 

Figure 9, enhances network security by integrating deep learning with Explainable AI, 

federated learning, and trust evaluation to defend against black hole attacks in IoT networks. 

Deep learning approaches such as MLPs can identify malicious nodes accurately, and the 

application of XAI can explain its decision to the analyst for better understanding of 

vulnerabilities. Federated learning is used to update distributed models without centralizing 

data, maintaining data privacy while adapting the model to changing threats within distributed 

IoT nodes are explained in Equation 24.  

𝐹𝑑[∝2− 𝑝𝑟𝑡′′]: → 𝑊𝑥[𝜕 +∪ 𝛿𝑟′′] − 𝜑𝜎′′  (24) 

The networks feature analysis is represented by the equation 𝐹𝑑[∝2− 𝑝𝑟𝑡′′]), which 

identifies network behavior deviations.  Trust scores 𝜕 +∪ 𝛿𝑟′′ and real-time adjustments 𝜑𝜎′′ 

are integrated in 𝑊𝑥 to provide more accurate attack detection. By using network properties 

and dynamic trust assessments, Equation 24 enhances the systems response to threats, hence 

strengthening the BHA detection on the analysis of network security. 

Furthermore, the mechanism for distrust evaluation dynamically evaluates the 

reliability of the nodes through historical behavior, hence enhancing security since it relates 

anomalous activity with trust scores. All these elements create a resilient adaptive defense 

against network threats. The network security ratio is gained by 98.51% in I-XAI. 
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Figure 10: Analysis of latency 

The latency analysis hinges on decreasing the detection and mitigation response times 

when it incorporates real-time anomaly detection aided by the edge-computing devices. The 

most crucial advantage it brings is the marking of suspicious activities as fast as possible 

without flooding the network resources are explained in Equation 25.  

𝛿∇ → 𝑁{∇ + 𝜌𝜎𝜏′′}: 𝜇𝜋{∆𝛿′′ + 𝐸𝑣𝑓}  (25) 

The model for network behavior analysis is given by the Equation 𝛿∇, which may 

identify patterns of attack or deviations. Equation 𝜇𝜋 can improve detection by using dynamic 

trust metrics ∆𝛿′′ + 𝐸𝑣𝑓 and real-time data processing. By integrating adaptive trust 

assessment with real-time anomaly identification, this equation improves black hole attack 

detection, guaranteeing accurate and quick responses to network threats on the analysis of 

latency. 

Thus, the travel time in data sent towards central servers for analysis might be 

immediately detected as being malicious nodes. Another benefit of federated learning with 

decentralized model updates is the efficiency of the detection and response mechanisms over 

the distributed IoT nodes. Thus, it realizes low latency since it is timely and accurate in its 

protection mechanism against network threats. The latency ratio is reduced by 25% is shown 

in Figure 10. 
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Table 3: The Comparison table of Exiting Methods and Proposed Method 

Aspects Key Features Exiting 

Methods in 

Ratio 

Proposed 

Method in 

Ratio 

Anomaly Detection Real-time monitoring of packet 

forwarding rates, node responses, and 

communication patterns 

37.89% 96.64% 

Detection Accuracy Identifies malicious node behaviors 

and separates them from legitimate 

activity 

35.47% 97.47% 

Error Rates Minimizes false positives and false 

negatives 

43.85% 97.36% 

Network Security Detects and mitigates black hole 

attacks while maintaining data 

privacy 

48.32% 98.51% 

Latency Real-time anomaly detection with 

low network resource consumption 

70.41% 25% 

In summary, an anomaly detection rate of 96.64%, an accuracy rate of 97.47%, a decrease 

in error rates of 97.36%, an improvement in network security of 98.51%, and a reduction in 

latency of 25%, our framework achieves great performance in black hole attack detection. To 

make sure that IoT settings are secure and that threats are responded to efficiently and in real-

time, deep learning, XAI, federated learning, and trust assessment are all integrated. 

4. CONCLUSION: 

An optimized Multi-Layer Perceptron model, built specifically for use on edge computing 

devices instead of the IoT nodes, is the basis of this system. Without the additional burden of 

security analysis, this architecture guarantees that IoT devices keep operating efficiently. The 

research has produced a huge dataset that offers profound insights into network behavior under 

different scenarios by simulating ordinary operating settings and the disrupted states typical of 

black hole assaults. Additionally, we have achieved low Mean Squared Error rates, with the 

lowest validation MSE. Plus, the models near-perfection Receiver Operating Characteristic 

curves for both benign and malignant actions show that it can discriminate well even in difficult 

situations. With the ever-changing landscape of cybersecurity threats, our model is designed to 

rapidly adapt to new and sophisticated attack vectors by using incremental learning and transfer 

learning. Upcoming updates will include dynamic anomaly detection algorithms and 

investigate hybrid models, merging MLP with other AI techniques, to keep up with the ever-

changing world of IoT security. Although these findings hold promise, it should be mentioned 

that they are grounded on computer models. To thoroughly test and evaluate our models 

effectiveness before deployment, we needed controlled settings, which is why we first decided 

to employ simulated surroundings. Unpredictability network settings is one of the several 

difficulties that arise during real-world testing. The diversity of IoT devices, unpredictable 
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network circumstances, and ethical and practical concerns about data privacy and security are 

just a few of the obstacles that exist in real-world testing. Because of these things, moving from 

a controlled simulation to the unpredictability of real-world applications requires caution. 

Future Work: To further improve security across varied threat environments, future work will 

investigate expanding the system to identify other IoT-specific threats such sinkhole and 

selective forwarding attacks. It is possible to enhance adaptive reaction skills by using 

reinforcement learning methods. To improve the dependability and robustness of IoT networks, 

we will focus on expanding the concept to larger IoT ecosystems and including cross-layer 

security mechanisms. 
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