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INTRODUCTION 

The smooth operation of modern society depends on the smooth flow of traffic on road 

networks, and the traffic flow is crucial to the planning and administration of transportation. 

Traffic flow has become a critical concern in social problems, with traffic congestion resulting 

in both disruption and potential safety. 

 

Therefore, traffic flow has become a major focus for research. For a more comprehensive 

understanding of traffic flow, there is a demand for accurate and quantitative models that can 

forecast all traffic situations  based on specific infrastructure. While of the available research 

has been devoted to understanding traffic behavior on straight road segments. Firstly 

Nagatani[1], in 1998 originally derived the lattice hydrodynamics model. Additionally, some 

other mathematical models by Wang[2, 3],Cheng[4], Du[5], Zhang[6], Yu[7], Mohan[8], 

Gupta[9], Jiang[10], Wanger[11] have been pro-posed. Subsequently, significant research 

efforts have been dedicated to the examination of the various factors such as backward looking 

effect, memory effect [12,13].The dynamics of traffic flow around curved road sections present 

unique challenges and opportunities. Here traffic is moving on a curved road as shown in Fig. 
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  Abstract: Due to topographical features, economic considerations, and driving safety, roads in actual traffic 

scenarios are often constructed with curves. Therefore, it is important to explore how traffic flow is influenced by 

curved roads. To analytically examine traffic behavior on such roads, this study introduces an extended lattice 

hydrodynamic model  for curved road conditions. Using linear stability analysis, the conditions for traffic stability 

are derived. The findings indicate that traffic stability is influenced by factors such as the curvature of road, friction 

coefficient and turning angle of the road. Furthermore, the Korteweg–de Vries (KdV) equation, and the modified 

KdV equation are obtained to represent nonlinear density waves in stable, metastable, and unstable traffic regimes,

respectively. Numerical simulations are conducted to support the analytical findings. Both theoretical analysis and 

simulation results demonstrate that traffic flow is significantly affected by the curvature and the curve angle of the 

road. Additionally, these factors also have an impact on the maximum theoretical traffic flux and vehicle speed.
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1(a) and Fig. 1(b) provides an explanation of Fig. 1(a). Numerous studies have investigated 

traffic flow characteristics on curved roads, recognizing the significant influence of road 

geometry on vehicle dynamics and overall traffic behavior. Notably, researchers such as 

Zhou[14], Jin[15], Wang [16], Kaur[17],Cao[18], and Wang[19] The later work by Wang[20] 

further refined the modeling of curved road sections, offering insights into congestion 

dynamics and system optimization. Collectively, these studies emphasize that a comprehensive 

understanding of how road curvature influences traffic flow is essential for optimizing highway 

design, alleviating congestion, and enhancing roadway safety, particularly in modern urban and 

high-speed transportation networks.” “Nagatani introduced a single-lane lattice hydrodynamic 

model, which provided a fundamental framework for understanding traffic flow in a simplified 

one-lane scenario. Following this, several researchers extended the lattice hydrodynamic model 

to account for curved road conditions, adapting the model to better reflect the complexities 

introduced by length of the curve according to radius of curvature. However, despite these 

advances, no study has yet reached a conclusive determination of how the road curvature 

specifically influences the flow of traffic. This gap in the research highlights the need for 

further exploration of how road curvature, particularly radius of curvature, affects vehicle 

dynamics, traffic congestion, and overall flow patterns in such settings. This study introduces 

a novel lattice hydrodynamic model specifically designed to investigate the impact of the road 

curvature during traffic flow. The lattice hydro- dynamic approach combines elements of both 

macroscopic and microscopic modeling, allowing for a more detailed examination of traffic 

dynamics while accounting for the curvature of the road. By incorporating interactions among 

vehicles and considering the curvature of the road, our model provides a unique framework for 

studying the complex relationships between vehicle movements and road geometry. Through 

extensive simulations analysis, the aim of the pro- posed model to elucidate how variations in 

the road curvature affect traffic flow.  

 

2 PROPOSED MODEL: 

Initially, Nagatani[1] developed one lane lattice hydrodynamic model is 

𝜕𝑡𝜌𝑗 + 𝜌0(𝜌𝑗𝑣𝑗 − 𝜌𝑗−1𝑣𝑗−1) =0                                                                                                 (1)                                                                                                 

𝜕𝑡𝜌𝑗𝑣𝑗 = 𝑎𝜌0𝑉(𝜌𝑗+1) − 𝑎𝜌𝑗𝑣𝑗                                                                                                    (2) 

Where “𝑎" symbolize the driver’s sensitivity coefficient and 𝜌0 stands for the average density. 

The terms 𝜌𝑗(𝑡) and 𝑣𝑗(𝑡)specifically indicate the density and velocity at the jth lattice point, 

respectively. According to Bando et al. [21], the optimal velocity function is specified as  

1 2

0 0

2 1 1
( ) tanh[( ) tanh( )]j

c c

V



   

+ = − − +                                                                                  (3) 

Here Vmax and 𝜌𝑐 stand for maximum velocity and critical density respectively.”Numerous 

studies have examined both curved highways and straight road segments with a variety of 

influencing factors. But up until now, road curvature hasn’t been taken into account. The curvature 

R of a curve at a specific point measures the rate at which the curve deviates from a straight line. 

For a curve y = √𝐴 − (𝑥 − 𝐴)2          where A represent the radius of curvature of the curved road. 

The curvature R is given by the following formula: R = 
|y′′|

(1+𝑦′2
)

3
2

 . The lattice spacing between the 

site j and j−1 is 𝑙 = ∫ √1 + 𝑦′2𝑥

𝑥−𝑥0
=

𝑥0

𝑠𝑖𝑛𝜃𝑗
. where 𝜃𝑗  represents the radian at jth site of curved 

road. The modified lattice spacing of the curved road can be used to compute the average headway 
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on curved road in terms of average headway on a straight road (1/𝜌0). Therefore, the basic lattice 

model of Nagatani is modified for 

𝜕𝑡𝜌𝑗 +
𝜌0

𝑠𝑖𝑛𝜃𝑗
((𝜌𝑗𝑣𝑗 − 𝜌𝑗−1𝑣𝑗−1) =0  and (𝜌𝑗(𝑡 + 𝜏)𝑣𝑗(𝑡 + 𝜏) = 

𝜌0

𝑠𝑖𝑛𝜃𝑗
 V(𝜌𝑗+1)) 

A LH model that takes into account the curvature of the road was proposed to close this gap and 

investigate methods of improving driver safety, driver training, and the development of driver- 

assistance technologies that are more human-limit compatible. The curvature of a road is the 

reciprocal of the radius of the road’s path at a given point. A road with a larger radius of curvature 

will be less curved (gentler curve), while a road with a smaller radius will be more sharply curved. 

This formula shows the relationship between the average headway on the straight road and the 

one on the curved road. Particularly significant on curved roads where safety concerns require 

slower driving, so velocities should be lower than maximum. A suggested lattice model is 

explained as follows in order to investigate the importance of road curvature for significant 

elements influencing driving behavior. A proposed lattice model is explained as follows in order 

to investigate the significance of road curvature for curved roads:” 

 

𝜕𝑡𝜌𝑗 + 𝜌0((1 + 𝑅)(𝜌𝑗𝑣𝑗 − 𝜌𝑗−1𝑣𝑗−1)) =0                                                                                 (4) 

𝜕𝑡𝜌𝑗𝑣𝑗 = 𝑎𝜌0(1 + 𝑅)(𝑉(𝜌𝑗+1) − 𝑎𝜌𝑗𝑣𝑗 )                                                                                   (5) 

“Where 𝑞𝑗 = 𝜌𝑗𝑣𝑗 , R is curvature of road during traffic flow and A = 1/R is the radius of the 

curvature curved road as R = 
|y′′|

(1+𝑦′2
)

3
2

  .  Here y′ is the first derivative of the function, representing 

the slope of the curve and y′′ is the second derivative, which gives the rate of change of the slope 

and, consequently, the curvature. The term (1 + 𝑦′2
)

3

2 accounts for the effect of the curve’s 

steepness on the radius.” In curved road scenario, the updated optimized velocity function is  

𝑉(𝜌𝑗+1) =
𝑘√𝜇𝑔𝐴

2
tanh [

2

𝜌0
−

𝜌

𝜌0
2 −

1

𝜌𝑐
) + tanh (

1

𝜌𝑐
).                                                                     (6)  

The maximum linear velocity is denoted as Vmax and determined by √𝜇𝑔𝐴, where μ stands for 

the friction coefficient, g represents gravitational force, and k is the controlling parameter for 

Vmax. In severe curves or turns, the radius of curvature is at its minimum, resulting in the highest 

curvature. This idea is essential to road design in order to make curves safe for drivers by 

accounting for variables like vehicle stability and speed. To increase safety and comfort on roads 

with significant curvature, super elevation and transition curves are frequently used to manage 

curvature.” After removing velocity 𝑣𝑗  from Eqs. (4) and (5), model equation obtained as: 

(𝜌𝑗(𝑡 + 2𝜏) − 𝜌𝑗(𝑡 + 2𝜏)) + 𝜏𝜌0
2(1 + 𝑅2)[ 𝑉(𝜌𝑗+1(𝑡)) − 𝑉 (𝜌𝑗(𝑡))]=0                                 (7) 

 

3. LINEAR ANALYSIS: 

To analyze the linear stability of the proposed model the density of traffic and the optimal velocity 

under uniform conditions, indicated by 𝜌0 and V(𝜌0) respectively have been utilized. The steady 

state solution for homogeneous traffic flow is as follows:  

0( )j t =    

0( ( )) ( )jV t V =         

Let𝑦𝑗(𝑡)  be a small perturbation to the steady-state density on site-j then  

𝜌𝑗(𝑡) = 𝜌0 + 𝑦𝑗(𝑡)  

𝑉(𝜌𝑗(𝑡))=  𝑉(𝜌0(𝑡)) + 𝑉′(𝜌0)𝑦𝑗(𝑡) 

Substituting 𝜌𝑗(𝑡) = 𝜌0 + 𝑦𝑗(𝑡)  and put 𝑦𝑗(𝑡)  = 𝑒𝑖𝑘𝑗+𝑧𝑡 in into Eq. (7), then  

𝑒2𝑧𝜏 − 𝑒2𝑧𝜏 + 𝜏𝜌0
2(1 + 𝑅)2𝑉′(𝜌0)𝑒𝑖𝑘−1                                                                                (8) 

Now use 2

1 2( ) ( )z z ik z ik= − in above equation and the compare the coefficient of (ik) And (ik)2 
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Then we get the value of 1z  , 2z and the value of 
1

a
 =  where a  is the driver sensitivity Linear 

analysis totally depend upon the value of “ a ”. Because the value of a and 1z  will use in to form 

the matlab code for linear analysis.  

1z = - 𝜌0
2(1 + 𝑅)2𝑉′(𝜌0)                                                                                                         (9) 

2z = 
−3𝜏𝑧1

2

2
 -  

𝜌0
2(1+𝑅)2𝑉′(𝜌0)

2
                                                                                                      (10) 

a = −3𝜌0
2(1 + 𝑅)2𝑉′(𝜌0)                                                                                                      (11) 

𝜏 =  
1

−3𝜌0
2(1+𝑅)2𝑉′(𝜌0)

                                                                                                               (12)  

 

From Eq. (12), the parameter of road curvature actively help stabilize traffic flow, ensuring a 

steady flow profile that enhances driver comfort. Thus the stability condition hold for  

 𝜏 <
1

−3𝜌0
2(1+𝑅)2𝑉′(𝜌0)

. the above stability criteria will become same as that of Nagatani [1] for R 

=0. The phase diagrams in density-sensitivity for the existing curved model and proposed model 

are compared in Fig.2. here R=0.5 and if we compare the value of curvature R=0.5 become when 

angle is π/4 . It is evident that the proposed model features a more stable zone for the given R = 

0.5, which means an improvement over the current model. This underscores the significance of 

road curvature in ensuring a consistent and safe traffic flow. Figure 3 shows the neutral stability 

curves (solid curves) in density-sensitivity space and the apex of each curve indicates the critical 

point for different values of R. The stable region, free of traffic jams is above the neutral curves 

and the unstable region where density waves appear is below them. Figure 3 clearly illustrates 

that the amplitude of these curves grows with the increase in the values of R from 0.5 to 1.5 This 

suggests that higher values of R lead to the expansion of an unstable region. The neutral stability 

curves (solid curves) increase along with R, notice that the amount of traffic flow increases The 

dotted curves in Fig. 3Displays the neutral stability curves and coexisting curves (solid curves) 

that split the phase plane into three areas: the unstable area below the neutral stability curve, the 

metastable area between the coexisting curve and neutral stability curve, and the stable area above 

the coexisting curve. 
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4. NONLINEAR ANALYSIS: 

“To investigate the nonlinear behavior near the critical point, we used the slower variables X and 

T. Nonlinear analysis allows for the examination of complex interactions between variables that 

may not be evident in a linear analysis. It can reveal emergent behaviors, stability, instability, and 

other intricate characteristics that are not apparent in simpler linear analysis. The analysis focused 

on a coarse scale, which means they looked at large-scale patterns in the traffic flow. For a small 

positive parameter ϵ, the slow variables X and T are defined as” 

 
3( ),X j bt T t = + =                                                                                                                 (13)    

where b is constant to be determined. Let 
j satisfy the following equation: 

 

( ) ( , )j ct R X T  = +                                                                                                                          (14) 

The following nonlinear partial differential equation is obtained by using Eqs. (13) and (14) to 

expand Eq. (7), in the neighborhood of critical point, τ𝑐 we define τ =τ𝑐 (1 + ϵ 2) and choosing  

b= - 𝜌0
2(1 + 𝑅)2𝑉′(𝜌0) . 

we get 

𝝐𝟒(𝝏𝑻𝑹 − 𝜇1𝜕𝑋
3𝑅 +  𝜇2𝝏𝑿𝑹𝟑) + 𝝐𝟓(𝜇3𝜕𝑋

2𝑅 + 𝜇4𝜕𝑋
4𝑅 + 𝜇5𝜕𝑋

2𝑹𝟑) = 0                                  (15) 

where V ′ =
𝒅𝒗(𝝆)

𝒅𝝆
 and V ′′′ = 

𝒅𝟑𝒗(𝝆)

𝒅𝝆𝟑    at 𝝆 =(𝜌𝑐) Table 1 provides the coefficients 𝜇𝑖 (i = 1, 2, ..., 5) 

as follows: 

Table 1: The coefficients 𝜇𝑖  of the model 

 
In order to derive the standard mKdV equation, we perform the following transformations in Eq. 

(15): 

1
1

2

' , 'T T R R





= =   

After implementing the transformation in Eq. (22), we obtain 
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3 3' ' ' [ '] 0,T X XR R R M R − + + =                                                                                            (16) 

where 2 2 3 41 5
3 4

1 2

1
[ '] ( ' ' ')X X XM R R R R

 
 

 
=  +  +    

We obtain the usual mKdV equation after neglecting the (𝜀) terms in Eq. (23) and intended kink-

soliton solution is given by 

'

0 ( , ') tanh ( ')
2

c
R X T c X cT= −

                                                                                         (17) 

The solvability condition must be met in order to calculate the propagation velocity for the kink-

antikink solution 

' ' ' '

0 0 0 0( [ ]) [ ] 0R M R dXR M R



−

= = ,                                                                                          (18) 

with '

0[ ] [ ']M R M R= . 

By solving Eq. (25), the value of c  is 

2 5

2 4 1 5

5

2 3
c

 

   
=

−
.                                                                                                               (19) 

Hence, the “kink-antikink” solution is given by 

1
1

2

( ) tanh ( )
2

j c

c c
t X c T


   


= + − ,                                                                               (20) 

with 2 1
c





= −  and the amplitude A  of the solution is 

21

2

A c





= .                                                                                                                       (21)       

                                                                                                                      
 

Two coexisting phases can be understood by the “kink-antikink” soliton solution. There is a 

congested high density phase as well as a low-density phase that is free to move, which may be 

separated from one another using the equation 
j c A = 

 
in the phase space ( , )a . 

5. NUMERICAL SIMULATION: 

In this phage theoretical results have been given and the process is conducted for the new model 

incorporating periodic boundary conditions are as follows: 

0

0

0
2

2

(0) (1)
M

A if j

j j M
A if j M




 

−  

−  





= =   

In this context, σ denotes the initial disturbance, while M represents the total−number of sites, 

fixed at 100, with σ = 0.1, τ = 1/a Vmax = 2 and (𝜌0) = 0.25, respectively. In Figure 4, the two-

dimensional distribution of density is depicted for different R values at a time step of 20, 300s. 

Figure. 4 displays the profiles of congestion traffic patterns with different coefficients of road 

curvature. According to the stability criterion, the amplitude of the density profile, illustrated in 

Figs. 4(a)-(b), steadily reduces with lower R values. Traffic flow becomes uniform at R = 0.5, as 

demonstrated in Fig. 4(c). We can see that although the vehicular system is unstable in patterns 

(a)–(b), the fluctuation of the traffic waves is significantly reduced as the effect coefficient R 

decreases. The above analysis reveals that the extent of the stability improvement is determined 

by the size of effect coefficient. Figure. 5 offer a clear depiction of the spatiotemporal evolution 

of density, specifically between time t = 20000 − 20300 correspond to the patterns in Fig. 4. In 

pattern (a) and pattern (b), a further decrease in R from 1.5 to 1 illustrates that the perturbation 

creates stop-and-go traffic that travels the other way. It’s amplified with an decrease in the value 

of (a) and (b), which decreases the amplitude of these knik-antikink density waves. For the values 
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R = 0.5 and a = 1.2, a stable region is reached, the perturbation at the ending dies out over time, 

and the flow becomes uniform as shown in Fig. 5(c). The value of the curvature coefficient 

decreases, entered into the stable region and therefore the smooth traffic flow will be appear.” 

 

 

 
 

6. CONCLUSION: 

The present study introduces an innovative lattice hydrodynamic model that incorporates the 

influence of road curvature to better understand traffic flow behavior on curved roads. Traditional 

models often overlook geometric features such as curvature, which play a crucial role in real-

world traffic flow. This approach provides a more accurate and realistic depiction of vehicle 

interactions, particularly in the case where road geometry can significantly affect driver behavior 

and spacing by explicitly integrating curvature into the modeling framework. A central aspect of 

this work is the derivation of a traffic flow stability condition using linear stability analysis. This 

analytical method enables the identification of the conditions under which small disturbances in 

vehicle spacing or speed either dissipate or grow over time, potentially leading to traffic 

instabilities. To delve deeper into the system’s behavior near the onset of instability, a modified 

Korteweg–de Vries (mKdV) equation is derived using nonlinear perturbation techniques around 

the critical points on the neutral stability curve. This facilitates the investigation of complex wave-

like patterns and nonlinear traffic phenomena, such as stop and-go waves, that emerge close to 
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instability thresholds. Numerical simulations are conducted to explore the effects of varying 

curvature parameters on traffic flow behavior and to verify the theoretical results. These 

simulations reveal that, as road curvature increases—especially with sharper bends—traffic flow 

becomes less stable, and the likelihood of congestion significantly rises. The findings underscore 

the significant impact of road geometry on traffic stability and highlight the necessity of 

incorporating geometric design considerations into traffic flow modeling and infrastructure 

planning. 
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