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Abstract: Support Vector Machines is renowned for their robustness in handling classification and regression. 

They work by finding the best hyperplane that is able to class data into different classes very well. But when 

dealing with data that is clustered as well as non-linearly separable, SVM can suffer from issues in establishing 

crisp decision boundaries. To overcome this, using nonlinear mapping functions is useful. These operations assist 

in mapping information into higher-dimensional feature spaces in which the nonlinear patterns can be specified 

more distinctively. Our study investigates the capability of non-linear mapping functions to transform cluster, 

non-linearly separable information into a feature space without increasing the level of dimension complexity. 

SVM are reported to be capable of distinguishing information by determining optimal hyperplanes that separate 

distinct classes. Using nonlinear mapping functions, we establish different linear decision boundaries in the feature 

space, thus improving the accuracy of classifying non-linear data. The research explores the influence of altering 

the parameter on such a transformation and includes comparative results for, and to prove the sustainability of the 

method. Further, the research advances the knowledge of SVM and kernel techniques while enabling examination 

of the significance of different sets of features and encouraging the creation of machine learning techniques. 
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1. INTRODUCTION 

Kernel Trick is a strong idea employed within Support Vector Machines (SVMs) for dealing 

with data that is not linearly separable. SVMs proceed by identifying the optimal possible 

hyperplane that can distinguish between classes of data. This is easy where the data exists as 

clear-cut groups within a straight line or plane. But with most real-world issues, the data points 

are intertwined in a manner such that no straight line can differentiate them. The kernel trick 

circumvents this by transforming the data into a high-dimensional space, where a linear 

separation is feasible. Rather than explicitly computing this transformation (which can be 

inefficient), the kernel trick employs a kernel function to compute the relationship between 

points as if they were pre-transformed into that space. This makes the process efficient and 

scalable. Well-known kernels are the polynomial kernel, radial basis function (RBF), and 

sigmoid kernel each designed for different kinds of patterns in the data. With an appropriate 

kernel, SVMs can actually be used to classify data which appears inseparable in lower 

dimensions. In plain language, the kernel trick allows SVMs to discover patterns when none 

appear to be present by "lifting" the data into a new space where the underlying structure is 

exposed. It's a clever, elegant solution for addressing challenging classification problems. 

These parameters have a significant influence on the classification outcomes, emphasizing the 

need for a thorough understanding of SVM to provide the best possible performance [3][4]. 
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SVM are binary classifiers that find the best hyperplane to distinguish between data samples, 

maximizing the margin, hard or soft. It is done by solving a quadratic programming problem. 

The resulting solution in the dual space is mapped back into the original space's surface of 

classification, where the structure of the features is the key to its application. The solid 

theoretical framework and high generalization ability of SVM have attracted much academic 

attention, and extensive research and developments continue to this day. SVM, based on risk 

minimization principles, adequately tackle issues of small sample sizes, nonlinearity, and high 

dimensions with minimal prior knowledge needed. SVM is thus especially well-suited to 

applications such as network intrusion detection systems. Choosing an adequate kernel 

function for practical projects is imperative because it should make the training set linearly 

separable in the feature space. Nonlinear models are needed for precise classification of 

nonlinear problems since linear SVM can be insufficient. A kernel function, linked to a semi-

positive definite kernel matrix, implicitly defines the feature space [5]. 

Support Vector Machines (SVM) is a strong supervised learning technique employed for 

classification and regression problems, which are known to work well with high-dimensional 

data and reliably obtain the best decision boundary between classes. SVMs try to determine 

the hyperplane that most separates the data into classes by maximizing the margin, i.e., the 

distance between the hyperplane and the closest data points of any class, referred to as support 

vectors. Support vectors are essential components of the training set, which determine the 

position and orientation of the hyperplane, and the elimination of any support vector would 

alter the position of the hyperplane. For linearly separable data, SVM identifies a linear 

hyperplane, but for non-linear data, it applies the kernel functions to project the data into a 

higher-dimensional space where linear separation can be achieved. The kernel trick enables 

SVM to function in high-dimensional spaces without directly calculating the coordinates of the 

data in that space, with typical kernels being the linear kernel, polynomial kernel, and radial 

basis function (RBF) kernel [6][11]. 

Semi-consistent hyperplanes generalize the concept of optimal hyperplanes by taking into 

account situations in which perfect separation of classes is impossible, in most real-world data 

cases when data points overlap or when data includes noisy points. Semi-consistent 

hyperplanes seek to maximize separation of data, minimizing misclassified points and 

maximizing the margin for correctly classified points. To manage non-separable data, SVM 

introduce the idea of a soft margin, where some misclassifications are permitted and are 

regulated by a parameter that manages the trade-off between maximizing the margin and 

minimizing classification errors. Slack variables determine the degree of misclassification for 

each point, balancing between maximizing the margin and minimizing the sum of slack 

variables [7]. With this implementation of the concept of semi-consistent hyperplanes into the 

support vector machines, we have enhanced the model's ability to handle the complexities of 

real-world data. Soft margin and slack variables allow SVM to keep that high classification 

accuracy but with some degree of local robustness against overlapping and noisy data, thereby 

making SVM a robust and versatile machine learning method that achieves an accurate and 

consistent classification under quite challenging conditions. This is particularly beneficial in 

areas such as bioinformatics, image recognition, and finance, where data are prone to noise and 

outliers, and they improve the model's ability to generalize on unseen data, thus lowering 

overfitting [9]. 
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2. LITERATURE REVIEW 

Huang K et al propose a new kernel dictionary learning framework for nonlinear industrial 

process monitoring, primarily considering the aluminium electrolysis process. The study points 

out shortcomings of linear process monitoring approaches in retaining non-linear behaviors 

and encourages movement of input data into a very high-dimensional feature space through 

kernel mappings. In this space, it is the kernel dictionary learning algorithm which identifies 

discriminative features for anomaly detection. This method proved superior over standard 

linear ones in diagnosing processes and has the potential for more widespread industrial 

application in systems with complex dynamics [1]. 

Zhou Z and others introduced a randomized version of Kernel Principal Component Analysis 

(KPCA) to handle large-scale process data more effectively. While the main advantage of 

KPCA is nonlinear structure modeling, the main drawback of KPCA is its computational 

demands which hinders it from real-time implementations on large datasets. Zhou's method 

randomizes the procedure to truncate the feature space without compromising the nonlinear 

relationship crucial for discriminations. Optimization substantially reduced the computation 

time as well as memory requirement and also allowed for practical implementation in large-

size industrial monitoring applications. The randomized KPCA showed excellent capability in 

process monitoring, suitable for varying online, real-time industrial processes[2]. 

Deng J et al, who presented a multi-block dynamic KPCA model for improved monitoring of 

dynamic and multi-block industrial processes. Classical KPCA tends to have difficulties with 

time-dependent and multi-source data. Deng's methodology adequately blends multi-block 

analysis and dynamic modeling to manage both spatial and temporal dependencies. The 

developed model gave better monitoring sensitivity and fault detection in dynamic nonlinear 

systems, confirmed by case studies in complicated industrial settings [3]. 

Zhang et al. proposed an unsupervised Kernel Extreme Learning Machine (KELM) for process 

monitoring. Being generally fast learners, the new age ELMs are known for their excellent 

generalization. Better still, the addition of kernel functions enables the ELM to handle 

nonlinear data. Zhang's framework preserved global data structure enhancing the detection of 

anomalies. Tested against benchmark data sets, KELM had outperformed older methods in 

terms of monitoring accuracy and fault sensitivity, thus proving the efficacy of merging ELM 

framework with kernel mapping for nonlinear process diagnosis [4]. 

Guo L et al introduced a sparse KPCA approach. Sparsity was achieved using a sequential 

updating strategy that allowed for compact data representation without sacrificing information 

fidelity. This not only enhanced monitoring precision but also lowered the computational cost, 

making it appropriate for industrial real-time use. The performance of the model on real 

industrial data reaffirmed its ability to effectively identify anomalies with sustaining speed 

processing and utilizing low system resources [5]. 

Liu Y et al solved this using Kernel Independent Component Analysis (KICA). Different from 

regular Independent Component Analysis (ICA), which is not effective in non-Gaussian 

nonlinear environments, KICA utilizes kernel techniques to reveal sophisticated statistical 

patterns and independent components related to process performance. The proposed model 

achieved improved fault detection and a greater understanding of the process dynamics. 

Implemented in a variety of industrial applications, KICA proved strong in monitoring 
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functions, particularly the detection of hidden faults and intricate inter-variable relationships 

[6]. 

Wang L et al emphasized improving KPCA with the incorporation of a double-weighted Local 

Outlier Factor (LOF) to address local outliers that tend to compromise monitoring precision. 

The conventional KPCA, as a global approach, remains susceptible to localized noise and data 

irregularities. The double-weighted LOF scheme facilitated the identification and suppression 

of the impact of the outliers, enhancing robustness and accuracy in the monitoring model. 

Empirical testing validated enhanced fault detection rates and immunity to data abnormalities, 

again supporting the model's utility in actual industrial environments [7]. 

Jiao J et al suggested an optimized Kernel Partial Least Squares (KPLS) approach specifically 

designed to detect quality-related faults in nonlinear processes. Whereas ordinary PLS models 

are linear and incapable of capturing nonlinear relations, KPLS utilizes kernel mappings to 

develop a description of complex associations among process variables and quality factors. 

Their adapted version improved the method's fault sensitivity to product quality problems. 

When applied to real industrial data sets, the adapted KPLS was able to catch slight shifts in 

quality characteristics and was thus a sound tool for ensuring product quality and production 

consistency in nonlinear manufacturing systems [8]. 

 

3. STRUCTURE OF PROPOSED SYSTEM 

The system under consideration is designed to leverage nonlinear mapping functions in Support 

Vector Machines (SVM) to restructure clustered, non-linearly separable data in a manner where 

linear separation is possible. It involves multiple important modules, each of which performs a 

different task in the overall data transformation as well as classification process. One of the 

pivotal steps is the process of choosing and extracting informative features that will effectively 

assist the nonlinear mapping, such that the transformed feature space provides more distinct 

class boundaries and enhanced model performance. This process can include feature 

engineering to construct new features that capture the data more effectively. Train the SVM 

with the transformed data in the feature space with higher dimensions. Examine the internal 

workings of the SVM and how the nonlinear mapping functions affect it. Learn how the 

transformation influences the decision boundary and how the various combinations of features 

are relevant. 

 
Fig 1: Structure of the proposed system 
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The application of this systematic method proves that nonlinear mapping functions have the 

ability to greatly improve SVM's classification performance on non-linearly separable data. 

The technique adds to greater understanding of SVM operations but also leaves doors open for 

using comparable techniques in more complicated, real-world datasets. Further work can be 

done with the investigation of further kernel functions, increasing computational efficiency, 

and testing the method across many fields. 

 

4. RATIONALE TO EMPLOY KERNEL METHODS 

Kernel techniques, especially when combined with Support Vector Machines (SVM), enable 

data to be projected into higher-dimensional spaces where it is separable in a more 

straightforward manner. The kernel trick performs this mapping without the actual calculation 

of the new, higher-dimensional coordinates but rather depends on kernel functions to calculate 

inner products of data points in this new space from the original input space. This capacity to 

treat non-linear relationships in the data is a real strength, for it enables more reliable fault 

detection in complex industrial processes. In process monitoring, the intricacy and nonlinearity 

found in many industrial processes are great challenges that are commonly beyond the 

capability of traditional linear methods. 

The kernel trick is a powerful technique for allowing linear algorithms to work well with 

nonlinear data by implicitly mapping data to a higher-dimensional space. Feature 

representation is enriched without altering the inherent data structure, and performance is 

enhanced in anomaly detection applications. Through the use of various kernel functions radial 

basis function, polynomial, and sigmoid models attain the adaptability necessary in order to 

match various distributions of the data in a way that they can be generalizable in a wide range 

of complex situations. One of the primary strengths of the kernel trick is computational 

efficiency: it avoids direct explicit transformation by calculating inner products in feature 

space, a feat that, for massive datasets, is particularly beneficial. Kernel-based methods are also 

very robust to noise and outliers, making the output monitoring results robust and more reliable. 

They also provide a straightforward path to the extension of classical linear models into 

nonlinear spaces, allowing practitioners to apply known algorithms with little or no 

modification. In combination, kernel methods provide a beautiful and economical solution to 

modern industrial monitoring with enhanced accuracy and flexibility for cases with nonlinear 

dynamics and high-dimensional complexity [4][5]. 

 

4.1 Kernel Methods in the Machine Learning  

Kernel-based techniques have become major tools in modern fault detection system design 

since they can detect challenging, nonlinear patterns in process data. Unlike traditional linear 

techniques that could be tested by complexities of real industrial processes, kernel techniques 

provide more accurate and uniform fault detection through data mapping into higher-

dimensional spaces where nonlinear relationships are linearly separable. A important initial 

step in this process is data preprocessing, specifically normalization. Normalization ensures 

that all variables regardless of their original units or ranges—make an equal contribution to the 

model. Without normalization, variables with large magnitudes will dominate the analysis, 

causing skewed results and impaired model performance. Normalization provides fair input to 

the learning process through scaling every feature to the same range, which also enhances the 
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sensitivity of the model to extreme process behavior deviations. Normalized data is now poised 

for advanced modeling. While standard procedure avoids the use of simple linear models due 

to interpretability, they fall short when faced with the inherent nonlinearities in industrial 

processes. Kernel techniques address this issue by enabling the transformation of the input data 

into a new space where the fault patterns and underlying structures are simpler to identify, 

resulting ultimately in improved monitoring performance and plant robustness. 

Supervised Learning: Detection of defects in a process by classifying them from labeled past 

data. 

• Classification: Classification facilitates early detection and accurate identification of 

distinct faults, allowing for early interventions. Classification is aimed at identifying 

normal and abnormal operating states. 

• Regression: Regression algorithms estimate continuous values from input features. The 

predictive ability plays an important role in proactive maintenance and optimization of 

industrial processes. 

• Ensemble methods: Ensemble methods are used to combine the predictions of several 

models to enhance overall accuracy and stability. This method tends to be more 

effective than a single model since it avoids overfitting and captures the strengths of 

various models. 

Unsupervised Learning: Anomaly detection in a process by identifying patterns and aberrations 

in unlabeled data. 

• Dimensionality reduction: This method decreases the number of variables being 

considered, making the dataset easier and keeping the critical information intact. 

• Clustering: Clustering algorithms place similar data points in the same group according 

to their features, without known labels. In process monitoring, clustering can be used 

to find natural groupings of data, which can correspond to various operating conditions 

or fault states. 

• Density Estimation: Density estimation is a method of modeling the probability 

distribution of a data set. This allows one to determine areas of high or low data density, 

which may be representative of normal or failure states. 

Many real-world datasets are not linearly separable, meaning a straight line (or hyperplane in 

higher dimensions) cannot perfectly separate the data points into distinct classes. Kernel 

functions use a technique known as the kernel trick, which allows the algorithm to compute the 

dot products of the transformed features implicitly, without ever explicitly transforming the 

data. Imagine you have a dataset where the classes form concentric circles. A linear classifier 

cannot separate these circles in the original 2D space. [3][5]. 

Polynomial Kernel Function is given as, 𝑘(𝑥, 𝑦) = (𝑥′𝑦 + 𝑐)𝑑                             (1)                                            

Where, c is a coefficient term and d is the degree of the polynomial. 

The polynomial kernel allows for the creation of a high-dimensional feature space where the 

original data, which may not be linearly separable, can be separated by a hyperplane. This is 

particularly useful in scenarios where data exhibits complex relationships that a linear kernel 

cannot capture. 
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Gaussian Kernel Function is given as, 
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Where, 𝛼 is the slope parameter and c is the intercept parameter. Adjust these values to 

control the characteristics of the kernel function. 

Laplacian Function is defined as, 
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Where, 𝜎 is the scale parameter that controls the width of the kernel. 

 

Within data-driven fault detection, kernel-based methods offer a general framework for the 

modeling of nonlinear systems. Selecting an appropriate kernel function to well capture the 

underlying structure of the data is the key stage of this approach. The linear, polynomial, and 

Gaussian (RBF) kernels are most widely used, with each possessing distinct advantages based 

on data nature. For instance, the RBF kernel performs very well whenever relations among 

variables contain complicated, nonlinear patterns, enabling the model to identify subtle patterns 

that less complex techniques may fail to see. Following selection of an adequate kernel, the 

model is trained upon a preprocessed dataset in which every feature is normalized to provide 

balanced representation. In training, the algorithm comes to recognize normal versus faulty 

states by examining inherent patterns, trends, and interdependencies within data. Trained, the 

model can analyze new input in real time and mark deviations from expected behavior as 

possible faults. What makes kernel methods unique is their ability to map data to a space of a 

higher dimension, facilitating the ability to make unambiguous distinctions between various 

operational states. This flexibility and accuracy serve them well in those critical industrial 

environments where timely and accurate fault detection is paramount to system integrity and 

reduced downtime. 

 

 
 

Fig 2: Polynomial kernel function                          Fig 3: Gaussian kernel function 
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Fig 4: Sigmoidal kernel function                           Fig 5: Laplacian kernel function 

 

5. METHODOLOGY AND RESULTS 

The kernel function is the application of a series of mathematical operations that transform the 

data in order to enable SVM to handle non-linear relations. Specifically, the kernel function 

transforms a non-linear decision surface into a linear equation in higher dimension. This 

conversion is achieved by computing the inner product between two points in the feature space, 

referred to as K(x1, x2), representing the inner product of x1 and x2 within this higher space. 

The properties of the kernel function enable it to execute the "kernel trick," allowing the 

computation of inner products among observations in the kernel-defined spaces.  

 

We define the equation for the points and it is given as, (𝑥0, 𝑦0) to a line 𝑋𝑥 + 𝑌𝑦 + 𝑍 = 0 is  

|𝑋𝑥0 + 𝑌𝑦0 + 𝑍|

√𝑋2 + 𝑌2
= 0 

 

Nonlinear mapping functions are responsible for a transformation of data in machine learning, 

particularly with Support Vector Machines (SVM). For non-linearly separable data, a linear 

classification method would be insufficient as a result of the intricate structure of the data. 

Nonlinear mapping functions meet this challenge by mapping the original data into a higher-

dimension feature space where the classes can be linearly separated. Some of the most common 

kernel functions are the polynomial kernel, radial basis function (RBF) kernel, and sigmoid 

kernel. All of these functions transform the input data into a higher dimension without actually 

computing the coordinates in the higher dimension, a method referred to as the "kernel trick." 

The implicit mapping enables the SVM to work in the transformed feature space but compute 

on the original input space, thus conserving computational resources and making it easier. The 

data points are mapped into a new feature space where these data can be linearly separable. In 

this new space, the SVM finds the optimal hyperplane that maximizes the margin between the 

different classes. The transformation enabled by the nonlinear mapping function allows the 
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SVM to construct a linear decision boundary in the new feature space, effectively solving the 

classification problem.  

Our process begins with selecting a suitable kernel function, which implicitly defines the 

nonlinear mapping, this converts nonlinear data points into a form that can be separated by a 

hyperplane.    
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Where, n is the highest values of corresponding class.            

Rn is the randomly chosen number, where Rn ˃ 𝑛.  

                                                                                                                                                     

Our research highlights the substantial benefits of using nonlinear mapping functions to 

transform clustered, non-linearly separable data into a format that can be separated linearly, 

thus enhancing the effectiveness of SVM. This is fundamental component of supervised 

machine learning, are adept at performing classification and regression by determining the 

optimal hyperplane that divides data into separate classes. Nonetheless, when dealing with 

inherently nonlinear and clustered data, defining a clear decision boundary can be difficult. By 

implementing nonlinear mapping functions, we convert the data into a higher-dimensional 

feature space where a linear decision boundary can be more easily identified. This 

transformation allows for more precise classification of nonlinear data, fully utilizing the 

capabilities of SVM [11]. 

To demonstrate the effectiveness of the kernel trick in classifying clustered nonlinear synthetic 

data, we employed a methodological approach that transforms data into a higher-dimensional 

feature space using nonlinear mapping functions, denoted as Φ, to make it linearly separable. 

We generated synthetic data with distinct nonlinear clusters and varied the nonlinear mapping 

parameter Rn  (testing values of 3, 4, and 5) to observe the impact on the distance between the 

transformed and original data. SVM models were trained on the transformed data for each Rn  

value, with appropriate kernel functions ensuring linear separability in the feature space. In 

order to compare the performance of SVM models, we inspected the classification results 

obtained under various parameter settings. By adjusting the values in a controlled manner, we 

could see how varying combinations of features shaped the model's behavior and decision-

making process. Observing the spatial orientation and location of the separating boundaries 

through these configurations provided useful insight into how the SVM responds to variations 

in input and parameter changes. This.ethodical variation not only illuminated the internal 

workings of the model but also highlighted the significance of using appropriate kernel choice 

and parameter tuning in the context of nonlinear data structures. The visual plots of the decision 

surfaces for both settings uncovered changes in the margin and classification boundaries, 

providing a dramatic illustration of the impact of tuning on model generalization. In addition, 
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we provided comparative analysis in graphical form by comparing theoretically computed 

results against values derived using computational simulation. This double evaluation enabled 

us to confirm the robustness and consistency of predictions made by the SVM, highlighting the 

imperative of experimental refinement in creating reliable classification models for 

complicated datasets

    
Fig 5: Analytically Solved for 3=Rn                         Fig 6: Validation for 3=Rn  

 

         
         Fig 7: Analytically Solved for 4=Rn                                  Fig 8: Validation for 4=Rn  

       
Fig 9: Analytically Solved for 5=Rn                                Fig 10: Validation for 5=Rn  

 



Eksplorium  p-ISSN 0854-1418 

Volume 46 No. 1, 2025:  1446–1457 e-ISSN 2503-426X 

1456 

 

1)()(.......)()()().( 11111121211111 −=+++ ssssss m                                                    

1)()(.......)()()().( 11212121221111 +=+++ ssssss m                                                    

 

The support vectors are identified from each class, 𝑠1 = [

𝑠11
𝑠12

⋮
𝑠1𝑛

] 𝑠2 = [

𝑠21

𝑠22

⋮
𝑠2n

]and 𝑠𝑚 = [

𝑠m1

𝑠𝑚2

⋮
𝑠mn

] 

The add biased value 1 to chosen vectors, ṡ1=

[
 
 
 
𝑠11
𝑠12

⋮
𝑠1𝑛

1 ]
 
 
 

 ṡ2=

[
 
 
 
 
𝑠21

𝑠22

⋮
𝑠2n

1 ]
 
 
 
 

 and ṡm=

[
 
 
 
 
𝑠m1

𝑠𝑚2

⋮
𝑠mn

1 ]
 
 
 
 

 

 

1))((.......))(()).((
*

1

**

1

*

22

*

1

*

11 −=+++ ssssss mm                                                                  

1))((.......))(()).((
*

2

**

2

*

22

*

2

*

11 +=+++ ssssss mm                                                                  

 

1

[
 
 
 
𝑠11
𝑠12

⋮
𝑠1𝑛

1 ]
 
 
 

.

[
 
 
 
𝑠11
𝑠12

⋮
𝑠1𝑛

1 ]
 
 
 

+2

[
 
 
 
 
𝑠21

𝑠22

⋮
𝑠2n

1 ]
 
 
 
 

.

[
 
 
 
𝑠11
𝑠12

⋮
𝑠1𝑛

1 ]
 
 
 

+……..+m

[
 
 
 
 
𝑠m1

𝑠𝑚2

⋮
𝑠mn

1 ]
 
 
 
 

.

[
 
 
 
𝑠11
𝑠12

⋮
𝑠1𝑛

1 ]
 
 
 

 = −1    

1

[
 
 
 
𝑠11
𝑠12

⋮
𝑠1𝑛

1 ]
 
 
 

.

[
 
 
 
 
𝑠21

𝑠22

⋮
𝑠2n

1 ]
 
 
 
 

+2

[
 
 
 
 
𝑠21

𝑠22

⋮
𝑠2n

1 ]
 
 
 
 

.

[
 
 
 
 
𝑠21

𝑠22

⋮
𝑠2n

1 ]
 
 
 
 

+……..+m

[
 
 
 
 
𝑠m1

𝑠𝑚2

⋮
𝑠mn

1 ]
 
 
 
 

.

[
 
 
 
 
𝑠21

𝑠22

⋮
𝑠2n

1 ]
 
 
 
 

 = +1     

 

We simplify the equation to obtain the values 1 , 2  and m  

Consequently, we find the hyperplane that classifies in the feature space.  
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Substitute the values in above equation, Therefore, we get ẇ and 𝑏. 

The hyperplane equation is formulated as bxwy +=
*

where 
*

w  represents the weighted vector 

and 𝑏 denotes the bias term. This mathematical expression precisely defines the decision 

boundary separating different classes in the feature space. 

 

CONCLUSION 

Our research demonstrates the efficacy of using nonlinear mapping functions to transform 

clustered, non-linearly separable data to a new feature space, thereby enhancing the 

performance of Support Vector Machines (SVM). By developing and applying these mapping 

functions, we effectively reveal a clear linear decision boundary within the feature space, 
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facilitating more accurate classification of nonlinear data. We illustrate how varying the 

parameter Rn  influences the transformation, with comparative results for 3=Rn , 4=Rn and

5=Rn confirming the approach’s robustness. This approach not only enhances our insight into 

the inner mechanisms of nonlinear models but also facilitates the assessment of the significance 

of different feature combinations, thereby pushing forward the frontiers of machine learning. 
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