
Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

155

“Design And Develop Computational Models to Reduce the Maintenance

Cost at Deployment Level”

1Ankit Kumar, 2Dr. Shashiraj Teotia

1Research scholar, Department of Computer Application, Swami Vivekanand Subharti University Meerut, UP,

INDIA

ankitbaliyan042@gmail.com

 2Research Supervisor, Department of Computer Application, Swami Vivekanand Subharti University Meerut,

UP, INDIA

shashirajt@gmail.com

Article Received: 12 May 2025, Revised: 15 June 2025, Accepted: 22 June 2025

Abstract: Software maintenance at the deployment stage remains a significant contributor to the total cost of

ownership (TCO) in software engineering. Despite advanced development practices, many organizations

experience escalated post-deployment maintenance due to unpredictable failures, inefficient resource utilization,

and lack of intelligent monitoring systems. This paper presents the design and implementation of computational

models that leverage machine learning and statistical methods to predict maintenance risks, automate diagnostics,

and optimize resource allocation. Experimental results demonstrate a substantial reduction in maintenance efforts

and costs when applied to real-world deployment environments. The proposed models offer scalable and

intelligent solutions for enhancing software maintainability in production systems.

Keywords: Deployment-level maintenance, machine learning, computational models, predictive diagnostics,

software reliability, TCO reduction, DevOps, anomaly detection.

1. INTRODUCTION

The increasing complexity of software systems has elevated the importance of effective

maintenance strategies, particularly at the deployment level. Studies suggest that maintenance

costs can consume over 60% of the total software lifecycle expenditure. This is primarily due

to reactive approaches to bug fixing, manual monitoring, and suboptimal resource

management. Computational models offer a promising avenue for proactive, intelligent, and

cost-efficient maintenance strategies. In the modern era of large-scale and cloud-based

applications, the deployment phase of software systems has become one of the most critical

stages in the software development lifecycle (SDLC). While traditional development processes

focus heavily on coding and testing, post-deployment maintenance is often under-

resourced—despite it being one of the most costly and risk-prone phases. Research by

Gartner and IEEE Software Engineering studies has shown that over 60% of the total cost of

ownership (TCO) for a software product is consumed in post-deployment maintenance. These

costs arise from emergency bug fixes, performance issues, security patching, user support, and

infrastructure optimization.

BACKGROUND

Software maintenance is a critical phase of the software development lifecycle, often incurring

the highest cost over time. Studies have consistently shown that more than 60% of the total

cost of ownership in software systems is consumed by maintenance-related activities. As

software systems grow in scale and complexity—particularly in dynamic, cloud-native, and

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

156

containerized environments—the challenges of ensuring reliability, availability, and

performance at the deployment stage become increasingly significant.

Traditionally, deployment-level maintenance has relied on reactive mechanisms, including

manual bug tracking, rule-based alert systems, and static resource provisioning. These

approaches often lead to delayed issue detection, inefficient resource usage, and prolonged

downtime, thereby inflating operational costs and impacting user experience.

Recent advancements in artificial intelligence (AI), machine learning (ML), and data-driven

DevOps offer new possibilities for transforming deployment maintenance from reactive to

proactive. By leveraging historical logs, telemetry data, and real-time monitoring metrics,

computational models can be trained to predict failures, detect anomalies automatically, and

optimize infrastructure usage.

Moreover, the integration of these models within Continuous Integration/Continuous

Deployment (CI/CD) pipelines facilitates real-time decision-making and adaptive resource

control. This research is positioned at the intersection of intelligent automation and software

operations, aiming to reduce maintenance costs through scalable, learning-based solutions that

adapt to evolving software environments.

1.1. CHALLENGES IN DEPLOYMENT-LEVEL MAINTENANCE

The high cost of deployment-level maintenance can be attributed to several underlying factors:

• Reactive Maintenance: Most organizations still operate on a reactive model, addressing bugs

and system issues after users encounter them. This often leads to service-level agreement

(SLA) violations and customer dissatisfaction.

• Manual Monitoring: Conventional monitoring methods rely heavily on human intervention

for log analysis, system observation, and anomaly identification—an inefficient and error-

prone approach.

• Resource Inefficiency: Inadequate or excessive allocation of resources such as CPU, memory,

or storage due to static provisioning or poor forecasting results in cost overruns or system

crashes.

• Lack of Predictive Capabilities: Existing systems often lack the ability to foresee failures or

performance bottlenecks based on historical patterns or current behavior.

These limitations collectively escalate maintenance costs, reduce system reliability, and

increase the burden on DevOps and support teams.

1.2. ROLE OF COMPUTATIONAL MODELS

To address these challenges, computational models—including machine learning (ML),

artificial intelligence (AI), and statistical methods—offer a proactive, intelligent, and

automated approach to system maintenance. In modern software systems, traditional

maintenance approaches are proving increasingly inadequate due to the complexity, scale, and

dynamic behavior of deployed applications. To overcome these limitations, computational

models based on machine learning (ML), artificial intelligence (AI), and statistical

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

157

techniques offer a proactive and intelligent framework for managing deployment-level

maintenance.

These models are designed to learn from historical datasets such as system logs, error reports,

usage trends, performance metrics, and incident records. By identifying patterns and

correlations in this data, the models can anticipate failures, detect real-time anomalies, and

optimize system behavior, all while reducing human effort and improving system uptime.

One of the primary advantages is the ability to forecast potential failures. For instance, ML

classifiers trained on historical failure logs can predict which components are likely to

malfunction under certain load or usage conditions. This predictive capability allows teams to

take corrective actions before a failure actually impacts the system.

Furthermore, real-time anomaly detection is critical in deployment environments where even

minor issues can cascade into significant outages. Using unsupervised learning methods such

as clustering or neural autoencoders, computational models can flag deviations from normal

behavior—such as memory leaks, CPU spikes, or unusual response times—prompting timely

investigation and resolution.

Another significant benefit is the ability to recommend or automate resource allocation.

Deployment environments often suffer from inefficient resource usage due to static

provisioning. Using reinforcement learning or optimization algorithms, computational models

can analyze workload patterns and suggest or enact dynamic scaling, load balancing, and

container orchestration decisions—reducing both underutilization and operational costs.

These computational models offer three major benefits:

• Scalability: They can operate effectively across highly distributed architectures, such as cloud-

native or microservice-based systems.

• Automation: They drastically reduce the need for manual monitoring, log inspection, and rule-

based scripts by continuously learning and acting autonomously.

• Adaptability: These models can be retrained or fine-tuned over time to adjust to evolving

application behavior, new deployment patterns, or updated infrastructure configurations.

In summary, computational models provide a data-driven, intelligent, and efficient

framework for managing post-deployment maintenance. Their ability to predict, detect, and

optimize not only enhances system reliability but also delivers tangible reductions in

maintenance costs and operational overhead.

1.3. RESEARCH OBJECTIVES

This study focuses on designing and developing a suite of computational models that work

cohesively to reduce maintenance costs and enhance system robustness at the deployment level.

The objectives of this research are:

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

158

1. Predict Potential Failures

Utilizing supervised learning algorithms trained on historical bug reports, crash logs, and

operational metrics, we aim to develop a predictive failure model that flags high-risk

components and deployment scenarios in advance.

2. Automate Anomaly Detection

By employing unsupervised models (e.g., autoencoders, clustering techniques), we seek to

detect performance anomalies, unexpected behaviors, or security deviations in real-time,

enabling early warnings and preemptive fixes.

3. Optimize System Resource Usage

Through reinforcement learning and optimization techniques, the research targets smart

resource provisioning (e.g., autoscaling, load balancing) that dynamically adjusts computing

resources based on predicted loads, thereby reducing infrastructure and maintenance costs.

1.4 LITERATURE REVIEW

The increasing complexity of deployment environments in modern software systems has drawn

considerable attention to predictive maintenance, anomaly detection, and intelligent resource

optimization. Numerous studies have shown that integrating machine learning into

maintenance workflows can significantly reduce operational costs and enhance system

reliability. Smith et al. (2021) explored the use of supervised learning models such as Random

Forest and Support Vector Machines for predicting software failures, highlighting their ability

to analyze historical logs and classify high-risk scenarios before failures occur. Similarly, Nair

and Gupta (2020) reported that logistic regression and decision trees offer improved detection

accuracy over traditional rule-based methods in crash prediction.

In parallel, deep learning approaches have gained traction for their effectiveness in detecting

anomalies within dynamic deployment environments. Patel et al. (2023) proposed a neural

architecture using stacked autoencoders to monitor and detect unusual behavior in cloud-based

systems, demonstrating high performance in identifying resource spikes and preventing

downtime. Jeong and Choi (2023) advanced this concept by incorporating time-series metrics

and system call patterns to enhance the contextual sensitivity of anomaly detection models.

Resource optimization has also been a major focus in recent literature. Chen and Zhang (2020)

utilized reinforcement learning to design agents capable of managing virtual machine scaling,

leading to substantial reductions in compute costs. Similarly, Tran and Bui (2019) showed that

Q-learning-based strategies adapt effectively to fluctuating workloads and outperform static

threshold-based autoscaling policies.

Recent efforts have emphasized the importance of integrating these models directly into

DevOps toolchains. Lee and Wang (2022) proposed a machine learning framework for

deployment diagnostics that is natively embedded in Kubernetes-based CI/CD pipelines. White

and Morris (2021) underscored the value of incorporating Prometheus, Grafana, and automated

alert systems to deliver actionable insights to developers in real time. Despite these advances,

existing approaches often suffer from limited generalizability across diverse software

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

159

architectures, scalability challenges in large-scale environments, and a lack of unified

integration between predictive, diagnostic, and optimization functions. These research gaps

motivate the hybrid approach proposed in this study, which aims to offer a modular, scalable,

and deployment-aware computational model to address maintenance cost reduction

holistically.

1.5 SCOPE AND SIGNIFICANCE

The proposed computational models are designed to be:

• Technology-agnostic: Usable across various platforms (e.g., Kubernetes, AWS, Azure).

• Lightweight and Real-time: Suitable for integration into continuous deployment pipelines

(CI/CD).

• Cost-focused: Specifically evaluated for their ability to reduce time-to-repair (MTTR),

improve uptime, and lower operational expenditures (OPEX).

By integrating these intelligent models into the software deployment pipeline, organizations

can transition from reactive maintenance to a predictive and preventive paradigm—ensuring

higher quality of service (QoS), improved system availability, and substantial cost savings.

 RELATED WORK

Prior studies have introduced fault prediction systems and DevOps automation tools, but with

limited integration into a unified computational model focused explicitly on reducing

maintenance costs. Notable research includes:

• Fault localization techniques using static and dynamic analysis [Smith et al., 2021].

• Deployment-aware ML pipelines [Lee and Wang, 2022].

• Anomaly detection using deep learning in cloud systems [Patel et al., 2023].

However, the gap remains in developing adaptable, lightweight, and generalizable models for

real-time deployment-level application.

3. METHODOLOGY

3.1 DATA COLLECTION

We collected over 1.2 million log events and 10,000 issue reports from three enterprise systems

over 18 months. This dataset included crash reports, server logs, CPU/memory usage metrics,

and patch deployment histories. To develop effective computational models for reducing

deployment-level maintenance costs, a systematic methodology was employed—

encompassing data collection, feature engineering, model design, and system integration

within a live deployment environment.

The study began with the collection of extensive operational data from three large-scale

enterprise applications deployed in production over an 18-month period. The dataset consisted

of over 1.2 million log events and 10,000 issue reports, including crash logs, service

interruption reports, system metrics (CPU, memory usage), and patch deployment histories.

This provided a rich foundation for training and validating predictive and adaptive models.

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

160

In the feature engineering phase, we extracted relevant characteristics from the raw data to

serve as input variables for model training. Key features included: frequency of component-

level failures, average time intervals between deployments and subsequent failures, dynamic

resource utilization trends, and code-level complexity metrics (such as cyclomatic complexity

and code churn). These features were standardized and normalized to improve model accuracy

and convergence.

For model design, a hybrid architecture was adopted to address the multi-faceted nature of

deployment-level maintenance challenges. A Random Forest Classifier was used for failure

prediction, chosen for its robustness, interpretability, and ability to handle imbalanced classes.

It classified potential failure scenarios based on temporal and behavioral patterns in the data.

For anomaly detection, an autoencoder-based neural network was implemented to capture

normal behavior profiles and flag metric anomalies in real-time. The reconstruction error

threshold was tuned to minimize false positives while maintaining sensitivity to rare events. In

the resource optimization component, a reinforcement learning (RL) agent was trained in

a simulated environment to learn optimal virtual machine (VM) scaling policies. The RL agent

received reward signals based on system performance, cost efficiency, and SLA adherence.

The complete model suite was deployed within a Kubernetes-based CI/CD pipeline, ensuring

real-time feedback and automation. System metrics were continuously monitored using

Prometheus, while Grafana dashboards provided visualization for DevOps teams. An

intermediate API layer facilitated communication between the models and the system,

enabling dynamic alert generation and automated rollback or scaling actions. Feedback from

these actions was fed back into the model training loop to ensure continuous learning and

adaptation.

This methodology not only supports proactive maintenance decisions but also embeds

intelligence directly into the software deployment lifecycle—leading to measurable reductions

in downtime, manual intervention, and infrastructure expenditure.

3.2 FEATURE ENGINEERING

Important features include:

• Frequency of component failures

• Time between updates and failures

• Resource consumption patterns

• Code complexity metrics

3.3 MODEL DESIGN

We designed a hybrid model architecture:

• Failure Prediction: Random Forest Classifier for classifying probable failure scenarios.

• Anomaly Detection: Autoencoder neural network for real-time metric anomaly detection.

• Resource Optimization: Reinforcement learning agent trained to manage VM scaling

decisions.

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

161

3.4 DEPLOYMENT ARCHITECTURE

Models are integrated into a Kubernetes-based CI/CD pipeline with Prometheus for monitoring

and Grafana for visualization. An API layer triggers alerting and feedback loops for developers.

The proposed computational models—responsible for failure prediction, anomaly detection,

and resource optimization—are deployed within a Kubernetes-based CI/CD (Continuous

Integration/Continuous Deployment) pipeline, enabling automated and scalable integration

into real-world environments.

Kubernetes is used as the orchestration platform due to its ability to manage containerized

microservices efficiently. Each model is containerized using Docker and deployed as a

microservice within a Kubernetes cluster. This modular deployment ensures scalability, fault

isolation, and easy maintenance. The system automatically scales model instances based on the

load, making it ideal for enterprise environments.

To enable real-time monitoring, Prometheus is employed as the primary telemetry and metric

collection tool. Prometheus continuously scrapes data from deployed services (such as CPU

usage, memory, request latency, failure frequency) and stores time-series data. This data is

critical for both the anomaly detection model and the reinforcement learning agent that handles

resource scaling.

For visualization and developer insight, Grafana dashboards are configured. These

dashboards display real-time alerts, resource utilization trends, and failure prediction

probabilities, allowing developers and operations teams to monitor system health and

performance effectively.

Additionally, an API layer is introduced between the models and the DevOps infrastructure.

This layer serves multiple purposes:

• It triggers alerts whenever anomalies or high failure probabilities are detected.

• It sends recommendations to developers based on model outputs, such as suggesting patching

actions or configuration changes.

• It closes the feedback loop by logging developer responses, which can then be used to retrain

models for continuous improvement.

This deployment architecture ensures that the computational models are not only technically

sound but also practically usable within standard DevOps workflows. The integration into

Kubernetes, along with tools like Prometheus and Grafana, allows for real-time automation,

observability, and feedback—ultimately contributing to lower maintenance costs and higher

deployment reliability.

3.5 WORKING PROCEDURE STEPS

The development and deployment of the proposed computational models followed a structured

workflow, consisting of the following key steps:

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

162

Step 1: Problem Identification

• Analyzed the current challenges in software deployment maintenance, including high detection

and repair time, resource wastage, and reactive issue handling.

Step 2: Data Collection

• Collected a comprehensive dataset from enterprise systems, including log events, failure

reports, CPU and memory usage metrics, and patch deployment history over 18 months.

Step 3: Feature Engineering

• Extracted meaningful features such as component failure frequency, resource usage trends,

update-to-failure intervals, and code complexity scores.

Step 4: Model Selection and Design

• Chose appropriate models for each task:

o Random Forest for failure prediction.

o Autoencoder Neural Network for anomaly detection.

o Reinforcement Learning Agent for optimizing resource allocation.

Step 5: Model Training and Validation

• Trained each model using labeled datasets.

• Validated performance using metrics such as accuracy, precision, AUC (for anomaly detection),

and cost efficiency (for RL agent).

Step 6: Integration into Deployment Pipeline

• Integrated the models into a Kubernetes-based CI/CD environment.

• Used Prometheus for monitoring and Grafana for visualizations.

• Developed an API layer to enable dynamic feedback and alerting.

Step 7: Real-Time Inference and Feedback Loop

• Deployed models to run continuously, detecting anomalies, predicting failures, and adjusting

resources in real time.

• Captured feedback for continuous retraining and adaptation of models.

Step 8: Evaluation and Analysis

• Measured improvements in MTTD, MTTR, cost savings, and model accuracy.

• Compared results against baseline methods to validate effectiveness.

4. RESULTS AND DISCUSSION

The proposed computational models were rigorously evaluated against key performance

metrics related to deployment-level maintenance. The results demonstrate substantial

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

163

improvements across multiple dimensions of system reliability, responsiveness, and cost-

efficiency.

A comparative analysis was performed between traditional (non-model-based) deployment

maintenance approaches and the integrated computational model framework. The evaluation

focused on three critical indicators: Mean Time to Detect (MTTD), Mean Time to Repair

(MTTR), and Monthly Maintenance Cost.

METRIC WITHOUT MODEL WITH MODEL IMPROVEMENT

Mean Time to Detect (MTTD) 14 hours 2.5 hours 82% reduction

Mean Time to Repair (MTTR) 8.3 hours 3.2 hours 61% reduction

Monthly Maintenance Cost 12,500 units 7,100 units 43% cost savings

FIG-1 , Show the improvement Monthly Maintenance Cost 12,500 units 7,100 units

The Mean Time to Detect (MTTD) was reduced from 14 hours to just 2.5 hours,

demonstrating the effectiveness of the anomaly detection module based on autoencoder neural

networks. This rapid detection enables quicker incident response and limits the scope of service

disruption.

Similarly, the Mean Time to Repair (MTTR) dropped from 8.3 hours to 3.2 hours, indicating

that early failure prediction using the Random Forest model allowed engineers to take pre-

emptive actions before full system failures occurred.

A notable benefit was observed in the Monthly Maintenance Cost, which decreased by 43%.

This reduction was attributed to fewer critical outages, optimized use of resources, and

decreased manual intervention due to intelligent automation and alerting.

In terms of technical model performance:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IMPROVEMENT

0

Monthly Maintenance Cost 12,500 units 7,100
units

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

164

• The failure prediction module using a Random Forest Classifier achieved a predictive

accuracy of 92.4%, indicating high reliability in classifying potential failure events across

diverse system states.

• The anomaly detection model achieved an Area Under the Curve (AUC) of 0.96, reflecting

a strong capability to distinguish between normal and abnormal behavior with minimal false

positives.

• The reinforcement learning-based resource optimizer achieved an 18% reduction in

compute cost when compared with standard Kubernetes horizontal pod autoscaling. The RL

agent consistently learned policies that balanced cost and performance, avoiding both over-

provisioning and under-provisioning of compute resources.

To visualize the performance results you described, we can create a set of three graphs that

highlight each key metric:

Here’s the plan for the graphs:

Graph 1: Bar chart showing Failure Prediction Accuracy at 92.4%

Graph 2: Bar chart showing Anomaly Detection AUC at 0.96 (96%)

Graph 3: Bar chart showing Compute Cost Reduction at 18% compared to baseline (0%)

I will generate these three bar charts together side-by-side for a clear comparison.

This visualization highlights the high reliability and efficiency of your models clearly. Would

you like me to generate separate detailed graphs for any specific metric or any other style of

visualization?

Furthermore, the system's adaptability and scalability imply strong potential for broader

application in diverse enterprise environments.

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

165

In summary, the results validate the hypothesis that a well-architected, hybrid computational

framework can lead to substantial gains in reducing maintenance overhead, enhancing

deployment stability, and promoting proactive system management.

5. FUTURE SCOPE AND INDUSTRY SCOPE

FUTURE SCOPE

While the current study demonstrates significant gains in reducing maintenance costs through

computational models, several avenues for future exploration remain:

• Integration with Edge and IoT Systems: As distributed systems evolve beyond the cloud

into edge environments, there is an opportunity to adapt these computational models to low-

latency, resource-constrained IoT deployments.

• Self-Healing Architectures: Future work can focus on building fully autonomous systems that

not only predict and detect failures but also execute self-healing routines without human

intervention.

• Explainable AI in Maintenance Models: Enhancing model interpretability through

explainable AI (XAI) techniques will increase developer trust and facilitate better decision-

making in high-stakes production environments.

• Cross-System Transfer Learning: Developing models that can generalize across different

software stacks, domains, or organizations will significantly reduce the data collection and

training costs for new systems.

• Security-Aware Maintenance Models: Future research can combine performance

maintenance with cybersecurity models, identifying not just system faults but also intrusion

attempts or vulnerabilities.

INDUSTRY SCOPE

The proposed computational framework holds vast potential for adoption across multiple

sectors:

• Enterprise IT Operations: Companies running large-scale, microservice-based

infrastructures can embed these models into DevOps pipelines for proactive maintenance,

reducing downtime and support costs.

• Cloud Service Providers: Major cloud vendors (e.g., AWS, Azure, GCP) can integrate such

models into their orchestration tools, offering customers predictive and cost-efficient

deployment management.

• Telecommunications and 5G Networks: Predictive maintenance at the deployment level can

help ensure high availability and SLA compliance in distributed telco environments,

particularly with NFV and SDN technologies.

• Healthcare and Critical Systems: Systems requiring high reliability, such as hospital IT

infrastructure or medical devices, can benefit greatly from early anomaly detection and failure

prediction.

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

166

• Smart Manufacturing and Industry 4.0: In industrial automation, the fusion of deployment-

level intelligence with predictive analytics can reduce maintenance delays and increase

machine uptime.

The implementation of intelligent computational models is not only academically promising

but also highly relevant and scalable for industrial transformation. As industries move toward

autonomous operations and AI-driven observability, such models will be central to sustainable,

resilient, and cost-effective deployment ecosystems.

6. CONCLUSION

This research demonstrates that deploying computational models at the deployment stage of

software lifecycle can significantly reduce maintenance costs and enhance system reliability.

The hybrid approach combining predictive analytics, anomaly detection, and intelligent

resource management proves effective across varied software environments. Future work will

explore integration with self-healing systems and multi-cloud deployments. This study presents

an effective approach to reducing software maintenance costs at the deployment level through

the integration of advanced computational models. By leveraging machine learning and

reinforcement learning techniques, the proposed framework significantly improves failure

prediction, real-time anomaly detection, and resource optimization.

The implementation across real-world enterprise systems demonstrated remarkable results,

including an 82% reduction in Mean Time to Detect (MTTD), a 61% decrease in Mean Time

to Repair (MTTR), and a 43% saving in monthly maintenance costs. The models not only

enhanced system reliability but also promoted automation, scalability, and adaptability.

Furthermore, the integration of these models into a Kubernetes-based CI/CD environment

illustrates the feasibility of real-time, proactive maintenance in modern deployment

infrastructures. The high accuracy of the predictive and anomaly detection models, along with

cost-efficient resource management, confirms the practical value of the proposed solution.

In conclusion, this research highlights the transformative role of intelligent computational

models in software deployment and maintenance. It lays a strong foundation for future

advancements toward self-healing systems, AI-driven DevOps, and autonomous infrastructure

management.

7. REFERENCES

[1] Smith, J., Patel, R., & Li, K. (2021). Predictive Maintenance Models in Software

Engineering. IEEE Transactions on Software Engineering, 47(6), 1204–1216.

[2] Lee, S., & Wang, Y. (2022). ML Pipelines for Deployment Reliability. ACM Transactions

on Software Systems, 40(3), 45–67.

[3] Patel, M., Kumar, V., & Zhou, L. (2023). Neural Anomaly Detection for Cloud Monitoring.

Journal of Cloud Computing, 12(1), 1–16.

[4] Chen, H., & Zhang, Y. (2020). Reinforcement Learning for Auto-scaling in Cloud

Environments. IEEE Access, 8, 122134–122145.

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 155–167 e-ISSN 2503-426X

167

[5] Kumar, A., & Singh, D. (2019). Anomaly Detection in Distributed Systems Using Deep

Learning. International Journal of Computer Applications, 182(34), 25–32.

[6] White, R., & Morris, D. (2021). CI/CD Integration for Intelligent Monitoring. Software:

Practice and Experience, 51(11), 2209–2224.

[7] Rodríguez González, V., Payá, Santos., C, A., y Peña Herrera. B. (2023). Estudio

criminológico del ciberdelincuente y sus víctimas. Cuadernos de RES PUBLICA en

Derecho y criminología, (1) 95-107. https://doi.org/10.46661/respublica.8072.

[8] Zhang, Q., & Tan, W. (2022). Scalable Machine Learning Frameworks for DevOps. ACM

Computing Surveys, 55(4), 78:1–78:32.

[9] Nair, S., & Gupta, P. (2020). Early Fault Detection Using Log Analysis and ML Models.

Journal of Systems and Software, 168, 110653.

[10] Ahmed, T., & Hoque, M. (2021). A Survey on Deployment Automation in

Microservices. IEEE Software, 38(4), 49–57.

[11] Tran, H., & Bui, L. (2019). Resource Optimization with Deep Q-Learning in Virtual

Machines. Future Generation Computer Systems, 100, 424–435.

[12] Lyu, M. R., & Yang, Y. (2020). Reliability-aware Software Deployment. IEEE Software,

37(2), 58–65.

[13] Vaidya, R., & Prakash, A. (2022). Explainable AI for Predictive Maintenance Models.

Expert Systems with Applications, 190, 116210.

[14] Santos, F., & Almeida, B. (2021). Log-based Failure Prediction Using NLP Techniques.

Empirical Software Engineering, 26(3), 1–29.

[15] Jeong, Y., & Choi, M. (2023). Security-aware Maintenance Modeling in Software

Systems. Computers & Security, 124, 102973.

[16] Singh, H., & Mehta, R. (2022). Container-based Deployment Monitoring with AI.

Journal of Software Engineering Research and Development, 10(2), 34–49.

