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Abstract 

Nonlinear fluid dynamics often exhibit rich and complex behavior marked by transitions from stability to chaos. 

In this study, we investigate such transitions using AI-accelerated computational frameworks tailored for fluid 

flows governed by the Navier-Stokes equations. Our approach integrates physics-informed neural networks 

(PINNs) with chaos quantification techniques to detect bifurcations, strange attractors, and sensitivity to initial 

conditions in both laminar and transitional regimes. We model benchmark systems including the Lorenz flow and 

2D Rayleigh–Bénard convection to demonstrate the accuracy of AI models in capturing spatiotemporal dynamics. 

Lyapunov exponents, Poincaré sections, and entropy measures are used to quantify chaos levels, and results are 

validated against traditional numerical solvers such as finite volume and finite element methods. The AI-based 

methods showed significant speed-ups (5–10x) without compromising accuracy. Our findings provide scalable 

alternatives for simulating turbulent systems in engineering and geophysical contexts. 

Keywords 
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I. INTRODUCTION 

Nonlinear fluid flow is a basic subject in the modeling of complex physical systems such as 

the dynamics of weather, the dynamics of the ocean, propulsion systems, and clinical 

biomedical equipment. The NavierStokes equations are typically used to describe such flows 
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and as parameters (most notably the Reynolds number) are varied, their solutions exhibit 

transitions between stable, periodic and chaotic behavior. Nonlinear systems are also 

characterized by extreme sensitivity to initial conditions, the existence of bifurcations and 

strange attractors, which make long-term behavior analytically intractable, in the sense that it 

is computationally impossible to make accurate predictions. Traditional numerical methods, 

encompassing finite difference, finite volume and spectral methods, are common to find 

approximate solutions to such complex equations, though they can be extremely demanding 

computationally to solve, particularly in high-dimensional, turbulent flows where both time 

and space must be discretized at high resolutions. Moreover, the appearance of chaotic 

structures may be hidden by numerical dissipation and the lack of temporal fidelity, thus 

limiting the ability of these techniques to follow phenomena in the entire nonlinear dynamics. 

The recent advances in artificial intelligence (AI), especially “physics-informed neural 

networks (PINNs)”, have enabled the combination of deep learning and physics to obtain fluid-

flow simulations that preserve the conservation laws. PINNs have the capability to solve 

“partial differential equations (PDEs)” with fewer computational costs and greater 

generalizability. These models do not require any heuristic terminations or external constraints 

because the governing equations are directly embedded in their loss functions, so physical 

conditions are met during training. Dynamical systems theory-based tools such as the existence 

of Lyapunov exponents, entropy measures, and Poincare sections can be used to complement 

the AI-based simulations in identifying the onset of chaos and in measuring the stability of the 

system. The resulting synergy of AI-powered computational techniques and the theory of chaos 

has been rapidly advancing real-time prediction and control of nonlinear fluid systems in the 

aerospace, energy, and climate science. 

 

 

 

 

 

 

 

 

Figure 1: Identifying capabilities of PINNS [3] 

The existing literature mostly focuses on traditional numerical solvers, or on individual 

artificial-intelligence (AI) models, failing to integrate chaos-detection techniques into the 

modeling workflow. Another research gap remains the development of AI-based frameworks 

that can cover the full range of nonlinear phenomena, laminar steady states, intermittent 

regimes to fully developed turbulence. The current study aims to overcome this shortcoming 

by developing a hybrid approach that combines AI-enhanced simulations with mathematical 

techniques of stability and chaos in fluid dynamics. In this regard, benchmark systems, namely 

Lorenz system, RayleighBEnard convection, and lid-driven cavity flow are simulated using 

“deep learning-based physics-informed neural networks (PINNs)”. The resulting flow fields 
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are examined in terms of transition points via Lyapunov spectra, bifurcation diagrams and 

attractor reconstruction. The AI framework is then tested against the traditional solvers and is 

put to test on the basis of computational efficiency and dynamical fidelity. The results will 

provide a scalable, interpretable and efficient structure to analyze nonlinear fluid systems. 

II. RELATED WORKS 

During the past few decades, the evolution of nonlinear fluid dynamics has become more and 

more influenced by the fact that it is the key to  

 

 

 

 

 

 

 

Figure 2: Improved PSO-TPA-LSTM Model, Time series prediction [9 

understanding such processes as turbulent atmospheric flows, combustion flows, convective 

instabilities and so on. Finite-volume schemes and spectral methods form the major numerical 

framework in common practice, but both are still found wanting in their ability to capture 

chaotic trajectories, especially in the neighborhood of bifurcation points, where infinitesimal 

perturbations may be exponentially magnified [8]. The use of artificial intelligence (AI) in the 

study of fluid dynamics has thus come out as a potential means of addressing such 

shortcomings. Raissi et al. have proposed “physics-informed neural networks (PINNs), where 

the governing partial differential equations (PDEs)” are incorporated into the loss function of 

a neural network, and PINNs can be used to generate highly accurate simulations with limited 

computational data [9]. After that, Jin et al. showed that PINNs are capable of efficiently 

reproducing incompressible NavierStokes equations, offering a computationally cheaper 

alternative to high-resolution conventional solvers [10]. Despite these achievements, most 

applications have been limited to laminar or temporally steady-state flow conditions, and 

relatively little effort has been focused on transitions to chaotic behavior. Realizing this, there 

have been recent efforts to bridge this gap by using deep-learning based frameworks that are 

aimed at either predicting or critically classifying chaotic behaviours. Specifically, Tiwari and 

Lakshmanan used long short term memory (LSTM) networks with attention modules to predict 

chaotic time-series generated under the Lorenz system where they demonstrated better 

temporal fidelity [11]. However, these models are lacking with respect to explanatory power 

of underlying fluid physics. At the same time, Yang et al. present a systematic review of hybrid 

methods which combine classical chaos diagnostics, such as Lyapunov exponents and a range 

of entropy-based measures, with neural architecture to measure initial condition sensitivity 

[12].] 
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The current paper is a systematic study of real-time detection techniques of the chaotic 

dynamics, especially in fluid flows. Liu et al. [13], compare three model classes, namely, 

convolutional neural networks (CNNs), physics-informed neural networks (PINNs) and 

recurrent architectures, to experimental data of RayleighB Benard convection and lid-driven 

cavity experiments. According to the authors, PINNs are able to replicate physical constraints 

accurately, whereas CNNs and recurrent models perform better in the situation of temporal 

instability. At the same time, Wang et al. [14] present a new loss function that is penalized 

using the largest Lyapunov exponent and show that the same can be effectively used to guide 

neural networks to solving the structure of attractor basins in turbulent regimes. In order to 

improve physical interpretability, Gholami et al. use explainable artificial intelligence (XAI) 

methodologies, including saliency maps and Shapley values, to reveal the decision logic behind 

deep networks predictions of chaotic flows. Their results show that models tend to rely on local 

flow characteristics to deduce global chaotic behavior, and so they highlight possible 

shortcoming in extrapolation to new flow regimes. In spite of these developments, a number 

of gaps remain: (i) a lack of integration between artificial-intelligence-based methods and 

powerful chaos quantification methods, (ii) the inability to characterize bifurcation-induced 

transitions in high-dimensional spaces, and (iii) a lack of integration between domain-specific 

expertise and neural-network architecture. This paper is aimed at addressing these deficiencies 

by suggesting a framework that combines computational-detectability tools with theoretical 

fluid stability analysis, is capable of giving interpretable explanations, and whose 

computational costs are not prohibitive. 

III. METHODOLOGY 

This study employs a hybrid modeling framework that integrates mathematical fluid dynamics, 

chaos theory, and artificial intelligence (AI) to investigate the stability and transition to chaos 

in nonlinear fluid systems. The workflow is structured to simulate benchmark fluid flows using 

both conventional numerical solvers and AI-based physics-informed neural networks (PINNs), 

followed by a multi-level chaos analysis using established indicators such as Lyapunov 

exponents and bifurcation mapping. 

Governing Equations 

The mathematical basis for this study lies in the incompressible Navier–Stokes equations, 

expressed as:  

 

Simulation Domains and Case Studies 

Three case studies were chosen: 

• Case 1: “Lorenz system (for chaos validation) 

• Case 2: 2D Rayleigh–Bénard convection (Ra = 10^5 to 10^7) 
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• Case 3: Lid-driven cavity flow (Re = 100 to 10000)” 

Each domain was simulated using both finite volume (FVM) solvers in OpenFOAM and 

PINN architectures implemented in Python (using TensorFlow). 

Table 1: Summary of Case Studies and Simulation Parameters 

Case 

Study 

Control 

Parameter 

Parameter 

Range 

Flow 

Regime 

Expected 

Solver 

Used 

Lorenz 

System 

Rayleigh 

Number (r) 

0–50 Periodic 

→ Chaotic 

Analytical + 

Python 

Rayleigh–

Bénard 

Convection 

Rayleigh 

Number 

(Ra) 

1×10⁵ – 

1×10⁷ 

Laminar 

→ 

Oscillatory 

→ Chaos 

OpenFOAM 

+ PINNs 

Lid-Driven 

Cavity 

Flow 

Reynolds 

Number 

(Re) 

100 – 

10000 

Steady → 

Vortical 

→ 

Unstable 

OpenFOAM 

+ PINNs 

 

Physics-Informed Neural Network Design 

The PINNs were trained to learn the flow dynamics by minimizing the residuals of the 

governing equations and initial/boundary conditions. The neural architecture consisted of: 

• 5 hidden layers with 100 neurons each 

• Activation: tanh 

• Optimizer: Adam + L-BFGS 

• Loss Function:  Ltotal=λfLf+λbLb+λ0L0 

Where Lf represents PDE residuals, Lb boundary constraints initial condition loss. The 

weights λ were tuned based on convergence and physical fidelity. 

AI Architecture and Training 

PINNs were implemented using TensorFlow and trained on the governing PDE residuals. 

The networks were designed to learn the hidden solution space of the Navier–Stokes 

equations using the following input-output mapping: 

• Inputs: Space–time coordinates (x,y,tx, y, tx,y,t) 

Outputs: Velocity components u,vu, vu,v, pressure ppp, or temperature TTT  

The architecture used a fully connected feedforward network with 5 hidden layers and 100 

neurons per layer. The loss function was a weighted combination of residuals from the 

momentum and continuity equations, boundary conditions, and initial conditions. Training 
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was performed using the Adam optimizer initially, followed by refinement with L-BFGS-

B to ensure convergence across all physics constraints. 

Table 2 presents the complete hyperparameter configuration used for training the PINNs 

across all fluid flow cases. 

Parameter Value / 

Setting 

Input 

Variables 

x,y,tx, y, 

t 

Output 

Variables 

u,v,pu, v, 

p or TT 

Hidden 

Layers 

5 

Neurons per 

Layer 

100 

Activation 

Function 

tanh 

Optimizer Adam 

(initial) + 

L-BFGS-

B 

Loss 

Components 

PDE 

residual, 

Initial, 

Boundary 

Training 

Epochs 

5000–

10000 

Average 

Runtime per 

Model 

~3.7 

hours 

(NVIDIA 

A100 

GPU) 

 

Software and Computational Framework 

• Numerical Solvers: OpenFOAM v9, COMSOL Multiphysics 

• AI Models: TensorFlow 2.13, PyTorch 1.12 (for baseline comparison) 

• Post-Processing: MATLAB R2023b, ParaView, and Python (NumPy, Matplotlib) 

Simulations were performed on an NVIDIA A100 GPU cluster, with average training 

times per model ≈ 120 epochs (~4 hours). 

Limitations and Ethical Considerations 

• The accuracy of chaos indicators such as Lyapunov exponents is sensitive to 

numerical noise in the neural output. 
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• AI models may misinterpret stiff regimes without adaptive re-weighting of PDE loss. 

• All datasets used were synthetic; no real-world turbulence datasets were deployed. 

IV. RESULTS AND ANALYSIS 

The hybrid simulation framework was evaluated across three nonlinear fluid flow cases: 

Lorenz system, Rayleigh–Bénard convection, and lid-driven cavity flow. This section 

presents the observed transitions from steady to chaotic states, compares results between 

physics-informed neural networks (PINNs) and traditional solvers, and analyzes dynamical 

behaviors using chaos quantification techniques. 

Flow Pattern Reconstruction and Validation 

AI-generated flow fields closely replicated the spatial and temporal dynamics observed in 

OpenFOAM simulations. In the lid-driven cavity flow at Re = 5000, PINNs successfully 

captured secondary vortex formation and boundary layer detachment, matching 

OpenFOAM’s contours with less than 4% deviation in velocity magnitude. 

Table 3 shows the flow streamlines generated by both PINN and OpenFOAM for the same 

case, highlighting the consistency in vortex structure and shear zone evolution. 

Case Study Control 

Parameter 

Solver RMSE 

(u) 

RMSE 

(v) 

Lid-Driven Cavity Flow Re = 5000 PINN vs. 

CFD 

0.037 0.042 

Rayleigh–Bénard 

Convection 

Ra = 1×10⁶ PINN vs. 

CFD 

0.044 0.039 

 

 The AI models achieved spatial error below 5% in all test cases while offering nearly 8× 

faster computation time during inference.  

Bifurcation and Stability Transitions 

The Lorenz system was used as a benchmark to test the ability of the framework to detect 

bifurcation points. As the Rayleigh-like parameter rrr increased from 10 to 30, the solution 

evolved from a stable fixed point to a limit cycle and then to chaotic attractors. 

Figure 2 illustrates the bifurcation diagram of the Lorenz system, generated from AI-

predicted trajectories. The transition threshold at r≈24.74r \approx 24.74r≈24.74 aligns with 

classical theory, validating the model’s sensitivity to control parameters. 
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Lyapunov Exponent and Chaos Detection 

 

Figure  3: Lyapunov Exponent and Chaos Detection [15] 

The maximum Lyapunov exponent (MLE) was calculated for all three systems. For the 

Lorenz system at r=28r = 28r=28, the MLE obtained via PINNs was 

λmax=0.90\lambda_{\text{max}} = 0.90λmax=0.90, consistent with analytical expectations. 

Table 4 Maximum Lyapunov Exponent Comparison  

System Parameter Solver MLE  

Lorenz r = 28 PINN 0.90 

Rayleigh–Bénard Convection Ra = 1×10⁷ PINN 0.63 

Lid-Driven Cavity Flow Re = 8000 PINN 0.51 

  

Entropy and Poincaré Section Analysis 

 

Figure 4:  Entropy and Poincaré Section Analysis [10] 
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Approximate entropy (ApEn) was used to assess the irregularity of temporal velocity signals. 

As expected, ApEn increased with system nonlinearity, especially in Rayleigh–Bénard 

convection at Ra = 1×10⁷. 

Figure 3 displays the Poincaré sections of the cavity flow velocity signal (Re = 8000). A 

filled, non-repeating point cloud confirms aperiodic dynamics, indicating a strange attractor 

in phase space. 

Table 5: Approximate Entropy (ApEn) Across Systems 

System Parameter ApEn 

Lorenz r = 28 0.92 

Rayleigh–Bénard Convection Ra = 1×10⁷ 0.81 

Lid-Driven Cavity Flow Re = 8000 0.78 

 

AI Model Performance vs. Traditional Solvers 

A comparative analysis was performed to assess the trade-offs between PINNs and CFD 

solvers. While traditional solvers offer better precision for sharp gradients, PINNs provided: 

• Faster runtime for inference (~8×) 

• Built-in interpretability through physics-based loss 

• Embedded chaos detection (via loss monitoring and trajectory divergence) 

 

Figure : Traditional solvers [9] 
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Table 6 PINNs vs. CFD – Efficiency and Stability Comparison 

Metric PINNs OpenFOAM (CFD) 

Avg. Runtime (per case) ~3.7 hrs ~11.5 hrs 

Stability under perturbation ✓ High ✓ High 

Adaptability to new parameters ✓✓✓ ✓✓ 

MLE Detection Support ✓ Built-in ✗ External Postproc 

 

The results confirm that AI-based solvers can accurately replicate nonlinear fluid dynamics and 

capture transitions to chaos. The bifurcation points, Lyapunov spectra, and entropy trends 

identified by the neural models were in excellent agreement with classical and numerical 

benchmarks. Notably, the Lorenz system’s attractor reconstruction demonstrated that trained 

PINNs can infer chaotic structures even without time marching. Similarly, the cavity flow's 

vortex evolution and entropy mapping reinforce the model’s applicability in transitional 

turbulence. The successful integration of chaos indicators into PINN output pipelines positions 

this framework as a scalable alternative for rapid fluid diagnostics in engineering and climate 

modeling. 

V. DISCUSSION 

The result of the current work proves that the use of AI-accelerated approaches, specifically 

the physics-informed neural networks (PINNs), can be considered as the working alternative 

to simulating nonlinear fluid flows and discovering the transitions to chaos. The result is 

critically interpreted below in connection with conventional numerical calculations, and 

modern AI research. The stability of PINNs reconstruction to both stable and moderately 

unstable regimes has been evidenced by the velocity and pressure reconstruction results of all 

the cases studied (RMSE < 5%). Their more prominent contribution is however the 

identification of chaotic behaviour with embedded physics. It is important to note that the 

correct bifurcation value of the Lorenz system (r = 24.74) and the increasing Lyapunov 

exponent of the RayleighBenard convection (Ra = 1 10 7) serve as evidence that the model is 

sensitive to nonlinear dynamics; a factor that tends to be ignored in the typical CFD pipeline. 

One of these peculiarities of the work was the inclusion of chaos quantifiers in AI training and 

assessment. Dynamic characterization of the flow regimes comprised of the analysis of the 

maximum Lyapunov exponent (MLE), Poincare maps and entropy measures which gave a 

detailed profile of the regimes in a temporal evolutionary process. These tools allowed not only 

classifying spatial patterns based on morphology but also on their generating trajectories. The 

MLE of the PINN solution to the Lorenz system (MLE = 0.90) has been in close approximation 

with the analytical benchmark value (MLE = 0.9056), thus supporting the potential of the 

method to measure the divergence of the trajectories, which is the main feature of a chaotic 

system. Further, entropy analysis demonstrated that PINNs achieved temporal unpredictability 

without overfitting even at the high-Re and Rayleigh-number regimes. These findings indicate 

the benefits of AI models that have physics, which scale more widely between turbulence scales 

and transition regimes than data-driven networks, when faced with chaotic time series [14]. 
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The trade-off between fidelity and computational speed is also brought into relief by a 

comparison to CFD solvers OpenFOAM. Although CFD schemes had better sharp-gradient 

resolution, particularly on walls or thermal plumes, PINNs had better inference time and 

flexibility. This trade-off is very useful in applications where the specific spatial accuracy is of 

less importance than the speed of prediction, e.g. online flow control or real-time hazard 

forecasting. The other important conclusion relates to inherent interpretability. Due to PINNs 

embedding conservation laws, the residuals of such equations are direct measures of physical 

consistency, unlike black-box machine-learning models. Taken along with saliency-driven 

attention studies of past works [15], these features make PINNs particularly appealing Such 

recent applications of physics-informed neural networks (PINNs) to sensitive areas, biomedical 

flow diagnostics and climate-related anomaly detection, have shown promise. However, there 

are a number of limitations that are identified. In very chaotic, rigid regimes, accuracy will be 

poor unless the loss terms can be adaptively reweighted. Also, time-window sensitivity and 

numerical variation makes chaos measures, e.g. the maximum Lyapunov exponents (MLE), 

less practical. The existing framework is also based on synthetic test cases; empirical 

verification, especially on experimental flow datacasets, is an important step forward to 

practical implementation. Overall, these results indicate that augmented with tools of 

dynamical systems, PINNs form a promising alternative to conventional solvers in the study 

of fluid-flow stability, transition phenomena, and chaotic motions. This combination of 

machine learning, physics, and chaos theory presents the new method of high-speed, 

interpretable, and data-efficient modeling of complex systems. 

VI. CONCLUSION 

The presented research presents a general methodology of numerical study of nonlinear fluid 

flows, utilizing AI-enhanced computational methods with a specific focus on detecting the 

stability and chaos. Based on this, physics-informed neural networks (PINNs) were utilized to 

solve the equations that govern the fluid dynamics to show the ability of AI models to replicate 

complex flow patterns and predict a transition to chaotic behavior. In order to confirm the 

suggested framework, three model systems, i.e., Lorenz system, Rayleigh-Benard convection, 

and lid-driven cavity flow, were examined. In both of them, solutions given by the AI-based 

solvers showed a significant level of consistency with classical computational fluid dynamics 

(CFD) results but with a significant decrease in the computational time. Other diagnostic tools 

such as the maximum Lyapunov exponent, approximate entropy and bifurcation diagrams were 

also successfully integrated into the framework thus yielding a more detailed understanding of 

the changing dynamics above and beyond spatial resolution. The findings indicate that PINNs 

could capture both steady and time-varying nonlinear phenomena and provide interpretable 

solutions by using physics-guided training and enabling real-time inference. Specifically, the 

method is very sensitive to dynamical instabilities, bifurcation points, and sensitivity to initial 

conditions, which makes it an ideal tool to study transitions in fluid flows, where high-fidelity 

simulations need to be performed in a short time, as in the case of aerospace design, 

environmental monitoring, or energy systems. However, the limitations of the frameworks, 

including but not limited to chronic sensitivity to loss weighted in chaotic regimes and the 

reliance on synthetic data, points to a requirement of additional optimization of the framework 

via adaptive training protocols and real-world validations. Future directions include applying 

the methods to experimental data, generalizing to three-dimensional turbulence and 

incorporating uncertainty quantification to make the methods more robust to noisy or 
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incomplete input data. Overall, the work contributes to the new field of scientific machine 

learning by showing that AI can be used to enhance our understanding of complex dynamical 

systems in addition to producing computational performance and mathematical rigor when the 

field is well-informed using physical principles. 
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