
Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

745

OWA-Adam: Accelerating Convergence through Ordered Weighted

Averaging in Adaptive Optimization

Surendra Goura, Md. Tabrez Nafisa, Suraiya Parveena, Syed Mohd Faisal Malika

aDepartment of Computer Science & Engg. Jamia Hamdard New Delhi, 110062, India

Article Received: 12 May 2025, Revised: 20 June 2025, Accepted: 28 June 2025

Abstract

This paper introduces OWA-Adam, a novel optimization algorithm addressing the challenges of efficient and

adaptive optimization in deep learning. By incorporating the advantages of adaptive learning rate algorithms,

gradient moment estimators, and ordered weighted average parameter updates, OWA-Adam aims to enhance

convergence speed and generalization performance in deep learning models. Unlike traditional Adam which uses

fixed exponential decay for moment estimation, OWA-Adam employs adaptive gradient aggregation strategies

that consider the relative importance of historical gradients. Through comprehensive experimental validation

across multiple independent trials, we demonstrate that OWA-Adam with exponential decay weighting achieves

faster convergence compared to standard Adam while maintaining identical final performance across all

evaluation metrics. Statistical significance testing across 10 independent trials confirms the robustness and

reliability of these improvements. These findings underscore the potential of OWA-Adam to significantly improve

the training process and overall performance of deep learning models. The implications of the proposed algorithm

extend to both the research community and academia, offering advancements in optimization techniques for deep

learning.

Keywords

Oder Weighted Averaging (OWA), Adaptive Moment Estimation (Adam), Optimization, Deep Learning,

Convergence Analysis

1. INTRODUCTION

Deep learning is a constantly evolving field that has revolutionized many sectors including healthcare, disaster

management, and manufacturing, and has capability to transform many more. Optimization algorithms are

fundamental to deep learning as they minimize the loss function during training, thereby attaining the desired

accuracy. Gradient Descent has been a widely used optimization algorithm to minimize the loss. Gradient descent

optimization algorithms have evolved significantly over the past few years. While stochastic gradient descent

(SGD) was the dominant algorithm for many years, more advanced algorithms have since been developed,

including AdaGrad, RMSProp, Adam, and others. These algorithms use advanced optimization techniques such

as adaptive learning rates, momentum, and weight decay, which help to improve convergence speed,

generalization performance, and robustness.

These improvements have been particularly beneficial for deep learning, as training deep neural networks is often

computationally intensive and prone to overfitting. By using more advanced optimization algorithms, researchers

are able to train deeper and more complex models with greater efficiency and accuracy. This work aims to further

contribute to the advancement of optimization techniques.

This work introduces a novel perspective by incorporating Ordered Weighted Averaging (OWA) operators into

Adam's moment estimation process. OWA operators, originally developed for multi-criteria decision making,

provide a flexible framework for aggregating values based on their relative importance rather than temporal

position alone. By replacing Adam's fixed exponential weighting with adaptive OWA-based aggregation, we

create OWA-Adam—an optimizer that can dynamically adjust the importance of historical gradients based on

optimization progress.

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

746

2. RELATED WORK

The field of optimization algorithms has witnessed significant evolution over the years, leading to notable

advancements in machine learning and deep learning. The initial adaptations of the gradient descent algorithms

relied on simple variations, such as batch gradient descent, where the entire dataset is used to compute the gradient

at each iteration. However, this approach was computationally expensive and struggled with large-scale datasets.

To address this limitation, stochastic gradient descent (SGD) was introduced, which randomly selects a single

data point or a small subset (mini-batch) to estimate the gradient. SGD significantly accelerated the convergence

rate and made optimization feasible for large datasets. Nevertheless, SGD had its drawbacks, including high

variance in gradient estimates and difficulty in finding an appropriate learning rate.

In response, several modifications to SGD emerged. One notable improvement is the introduction of adaptive

learning rate algorithms. AdaGrad adapts the learning rate for each parameter based on the historical gradient,

giving larger updates to infrequent features and smaller updates to frequent ones. This approach ensures a more

appropriate learning rate choice and enhances convergence performance [1].

Momentum-based techniques have also played a crucial role in enhancing gradient descent optimization. By

accumulating a fraction of previous gradients, algorithms like momentum improve convergence, especially in

situations with high curvature or noisy gradients. Momentum SGD introduces a momentum term that accelerates

convergence and helps the optimization process navigate flatter regions of the loss landscape [2].

Nesterov accelerated gradient (NAG) builds upon momentum SGD by incorporating a lookahead mechanism. It

evaluates the gradient ahead of the current position and uses that information to adjust the momentum term. This

lookahead feature improves convergence and enables faster convergence rates [3].

RMSProp addresses the issue of choosing an appropriate learning rate by adapting it dynamically for each

parameter. It scales the learning rate by the root mean square of the recent gradients, providing robustness to

different learning rate choices and improving convergence performance [4].

AdaDelta and AdaMax are extensions of the AdaGrad algorithm. AdaDelta dynamically adapts the learning rate

without requiring an initial learning rate value. It addresses the diminishing learning rate problem by using a more

sophisticated update rule. AdaMax extends AdaGrad by using the infinity norm instead of the Euclidean norm,

resulting in better stability and convergence properties [5].

Adam combines the benefits of adaptive learning rates and momentum techniques. It maintains adaptive learning

rates for each parameter and incorporates momentum-like behaviour by utilizing estimates of both first and second

moments of the gradients. Adam has gained significant popularity due to its robustness, efficiency, and

convergence speed [6].

While Adam has been shown to perform well on a variety of tasks, there is still room for improvement. In recent

years, researchers have proposed several modifications to the original Adam algorithm that aim to enhance its

performance. One such example is Nadam, that combines the ideas of NAG and Adam. It incorporates NAG's

lookahead feature into Adam, resulting in improved convergence rates and optimization performance [7].

One popular approach to improving Adam is to modify the way in which the learning rate is updated. For example,

the AMSGrad algorithm [8] modifies the Adam update rule to prevent the learning rate from decreasing too

quickly. This modification has been shown to improve the convergence speed and generalization performance of

Adam on a range of tasks.

Another approach to improving Adam is to incorporate second-order information into the optimization process.

For example, the AdamW algorithm [9] adds weight decay to the Adam update rule, which has been shown to

improve the generalization performance of Adam on large-scale datasets. Similarly, the RAdam algorithm [10]

incorporates variance rectification to the Adam update rule, which has been shown to improve the convergence

speed and generalization performance of Adam on a range of tasks.

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

747

Another modification to Adam is the use of momentum correction, which can help prevent overshooting. For

example, the Yogi algorithm [11] modifies the Adam update rule to include a momentum correction term, which

has been shown to improve the convergence speed and generalization performance of Adam on a range of tasks.

Finally, some researchers have proposed modifications to the way in which the gradient estimates are computed

in Adam. For example, the Padam algorithm [12], uses partial updates to the gradient estimates to reduce the

computational cost of Adam while maintaining its performance.

In conclusion, the evolution of gradient descent optimization algorithms has led to significant improvements in

both convergence speed and accuracy. Techniques such Adam have played crucial roles in enhancing optimization

algorithms. However, there is still room for improvement. Researchers have proposed several modifications to

the original Adam algorithm that aim to enhance its performance. These modifications include changes to the

learning rate update rule, the incorporation of second-order information, the use of momentum correction, and

modifications to the gradient estimation process.

3. ADAM AND ABOVE

Adam is a combination of AdaGrad and RMSProp which maintains a moving average of the gradients and their

squares, which are used to update the parameters of the network in a way that adapts to the curvature of the loss

function [13]. A basic template of Adam is as follows:

3.1 Understanding Adam

Algorithm 1 Adaptive Moment Estimation

Require: 𝛼 : Step size

Require: 𝛽1, 𝛽2 ∈ [0,1) : Exponential decay rates for the moment estimates

Require: 𝑓(𝜃) : Stochastic objective function with parameters 𝜃

Require: 𝜃0 : Initial parameter vector

𝑚0 ← 0

𝑣0 ← 0

𝑡 ← 0

while 𝜃𝑡 not converged do

𝑡 ← 𝑡 + 1

𝑔𝑡 ← 𝛻𝜃𝑓𝑡(𝜃𝑡−1)

𝑚𝑡 ← 𝛽1 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡

𝑣𝑡 ← 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2

𝑚𝑡̂ ← 𝑚𝑡/(1 − 𝛽1
𝑡)

𝑣𝑡̂ ← 𝑣𝑡/(1 − 𝛽2
𝑡)

𝜃𝑡 ← 𝜃𝑡−1 − 𝛼 ⋅ 𝑚𝑡̂/(√𝑣𝑡̂ + 𝜖)

end while

return 𝜃𝑡

The algorithm optimizes parameters in stochastic objective function. It starts by initializing first and second

moment vectors. In each iteration, the gradient of the objective function is computed. Moment estimates are then

updated based on decay rates and are bias-corrected for better accuracy. After obtaining the corrected estimates,

the parameter value is updated based on the moments. This cycle repeats until convergence, resulting in optimized

parameters.

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

748

Here for calculating the first moment estimate and the second raw moment estimate we use β1 and β2 as constant

values (generally 0.9 and 0.99 respectively). During each step of learning the previous value is given a weightage

factor for β1 and the current gradient of 1- β1 (β2 in case of other parameter).

3.2 Ordered Weighted Averaging(OWA)

Ordered Weighted Averaging (OWA) operators are a class of aggregation functions used in decision-making and

multi-criteria evaluation. OWA operators allow the consideration of different preferences for the elements being

aggregated. They were introduced by Ronald Yager in the early 1980s and have found applications in various

fields, including decision theory, fuzzy logic, and artificial intelligence.

The general idea behind OWA operators is to first sort the elements to be aggregated in ascending order and then

assign weights to each element based on its position in the sorted list. The weights are usually determined

according to a specific weight vector that reflects the decision maker's or system's preferences.

The OWA operator takes the following form:

() 
=

=
n

i

iin ywxxxOWA
1

21 ,...,,

where yi is the ith largest score from amongst x1, x2,…,xn.

The weights are all non-negative, and their sum equals one









=

=

n

i

iw
1

1

The weights can be defined in different ways depending on the application and decision maker's preferences.

Some common methods for assigning weights are equal weights (all w(i) are the same) linear weights (linearly

increasing or decreasing weights), and exponential weights (exponentially increasing or decreasing weights).

OWA operators provide a flexible and powerful way to aggregate data when the decision maker's preferences are

not fully known or when there is uncertainty in the decision-making process. They can handle various scenarios

and are particularly useful in situations where decision makers want to emphasize certain extreme values or middle

values in the data.

3.3 Modifying Adam Using Ordered Weighted Averaging (OWA)

In case of Adam, to update the moment estimate, a higher weightage(β1) is assigned to the immediate previous

value (mt-1). In this scenario, no weightage is given to the other previously obtained parameters i.e., mt-1, mt-2, mt-

3…………. mt-n . Rather than using a single parameter to update, we can assign weights to all the previously obtained

parameters and computing an ordered weighted average for updating the current parameter.

An Ordered Weighted Average (OWA) operator of dimension n is a mapping F : Rn 🡪 R that has an associated

collection of weights W = [w1 , w2 , w3…..] lying in the unit interval and summing to one and with

𝐹(𝑎1, … , 𝑎𝑛) = ∑

𝑛

𝑗=1

𝑤𝑗𝑏𝑗

Where bj is the jth largest of the ai. In this case we use OWA to assigns higher weights to the latest computed

parameter and lower weights to the initially calculated parameters. This allows the OWA function to capture the

relative importance of the inputs as the algorithm progresses. The modified moments are as follows:

𝑚𝑡 = 𝛽1 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡 🡪 𝑚𝑡= (1 − 𝛽1) ⋅ 𝑔𝑡 + Owa with β1 = 1- ∑𝑛
𝑗=1 𝑤𝑗

Similarly,

𝑣𝑡 = 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2 🡪 𝑣𝑡 = (1 − 𝛽2) ⋅ 𝑔𝑡

2
 + Owa with β2 = 1- ∑𝑛

𝑗=1 𝑤𝑗

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

749

Where, Owa is the ordered weighted average of previous moments. We can re-write the updated algorithm as

follows:

Algorithm 2: OWA based Adaptive Moment Estimation (OWA Adam)

Require: 𝛼, 𝛽1, 𝛽2 ∈ [0,1)

Require: W : OWA weight strategy (exponential_decay, linear_decay, uniform, random)

Require: 𝑓(𝜃) : Stochastic objective function with parameters 𝜃

Require: 𝜃0 : Initial parameter vector

𝑚0; 𝑣0; 𝑡 ← 0 (Initialize 1st , 2nd moment vector and timestep)

gradient_history ← [] (Initialize gradient history)

gradient_squared_history ← [] (Initialize squared gradient history)

while 𝜃𝑡 not converged do

𝑡 ← 𝑡 + 1

𝑔𝑡 ← 𝛻𝜃𝑓𝑡(𝜃𝑡−1)

gradient_history.append(gₜ) (Store current gradient)

gradient_squared_history.append(gₜ²) (Store squared gradient)

w₁, w₂, ..., wₙ ← generate_owa_weights(W, len(gradient_history))

Owa1 ← ∑𝑛
𝑗=1 𝑤𝑗 ∗ 𝑚𝑗

𝑚𝑡 ← 𝑂𝑤𝑎1 + (1 − 𝛽1) ⋅ 𝑔𝑡

Owa2 ← ∑𝑛
𝑗=1 𝑤𝑗 ∗ 𝑣𝑗

𝑣𝑡 ← 𝑂𝑤𝑎2 + (1 − 𝛽2) ⋅ 𝑔𝑡
2

𝑚𝑡̂ ← 𝑚𝑡/(1 − 𝛽1
𝑡)

𝑣𝑡̂ ← 𝑣𝑡/(1 − 𝛽2
𝑡)

𝜃𝑡 ← 𝜃𝑡−1 − 𝛼 ⋅ 𝑚𝑡̂/(√𝑣𝑡̂ + 𝜖)

end while

return 𝜃𝑡

Workflow

Figure 1: Flowchart of Gradient Descent Optimization using OWAAdam

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

750

3.4 OWA Weighting Strategies

We investigate four distinct OWA weighting strategies:

1. Exponential Decay: w[i] = exp(-i·λ), normalized

2. Linear Decay: w[i] = (n-i+1)/Σⱼ(n-j+1)

3. Uniform: w[i] = 1/n for all i

4. Random: w ~ Dirichlet(α₁, ..., αₙ), sorted

Each strategy embodies different assumptions about the relative importance of historical gradients, allowing

empirical determination of optimal weighting schemes.

4. EXPERIMENT

4.1 DATASET

In order to test the performance of OWAAdam we have used human heights and weights dataset [14]. The dataset

comprises 25,000 synthetic records of human heights and weights for 18-year-old children. These records were

simulated based on a Growth Survey conducted in 1993 involving 25,000 children from birth to 18 years old in

Hong Kong.

4.2 MULTI-TRIAL METHODOLOGY

To ensure statistical rigor, we conduct 10 independent trials with different random seeds for each optimizer

configuration. This approach enables:

● Confidence interval estimation

● Statistical significance testing

● Robustness validation

● Effect size quantification

4.3 EXPERIMENT PARAMETERS

Table 1: Experimental Configuration

Parameter Value Description

Learning Rate (α) 0.01 Fixed across all

optimizers

Adam β₁ 0.9 First moment decay rate

Adam β₂ 0.999 Second moment decay

rate

Epsilon (ε) 1e-8 Numerical stability

constant

Maximum Iterations 200 Training termination

limit

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

751

Convergence Threshold 1e-6 Loss improvement

threshold

Batch Size Full dataset Single-batch training

OWA History Size 30 Maximum gradient

history length

Random Seed Range 42–51 Seeds for 10 independent

trials

Model Architecture Linear Regression Single-layer dense

network

4.4 EVALUATION METRICS

Table 2. Comprehensive Evaluation Framework

Category Metric Purpose Interpretation

Regression Metrics

Mean Squared Error

(MSE)

Primary loss measure Lower values indicate

better fit

Root Mean Square Error

(RMSE)

Interpretable error scale Same units as target

variable

Mean Absolute

Percentage Error

(MAPE)

Relative error assessment Percentage-based

comparison

Coefficient of

Determination (R²)

Model fit quality Higher values indicate

better explanatory power

Explained Variance

Score

Variance captured by

model

Fraction of variance

explained

Maximum Error Worst-case performance Largest individual

prediction error

Optimization Metrics

Convergence Speed Training efficiency Iterations to reach

convergence threshold

Runtime Efficiency Computational cost Wall-clock time per

iteration

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

752

Convergence

Smoothness

Training stability Variance in loss

trajectory

Gradient Stability Optimization robustness Consistency of gradient

magnitudes

Parameter Trajectory

Stability

Update consistency Smoothness of parameter

evolution

Statistical Validation

95% Confidence

Intervals

Uncertainty

quantification

Range of expected

performance

Welch's t-tests Significance testing P-values for mean

differences

Cohen's d Effect size measurement Practical significance of

differences

Mann-Whitney U tests Non-parametric

validation

Distribution-free

significance testing

5. RESULTS AND ANALYSIS

5.1 Primary Performance Results

Table 3 presents the comprehensive performance comparison across all optimizers and metrics:

Table 3. Comprehensive Performance Analysis (10 Trials)

Metric OWA-Adam

(exp_decay)

Standard

Adam

OWA-Adam

(random)

OWA-Adam

(linear_decay)

OWA-Adam

(uniform)

Test MSE

(Mean ± SD)

0.7537 ± 0.0001 0.7537 ±

0.0000

0.7613 ±

0.0069

0.7542 ± 0.0005 0.7576 ±

0.0032

RMSE

(Mean ± SD)

0.8682 ± 0.00002 0.8682 ±

0.00002

0.8725 ±

0.00402

0.8685 ± 0.00032 0.8704 ±

0.00192

MAPE

(Mean ± SD)

286.21 ± 1.29 285.76 ±

0.02

261.56 ±

24.29

291.49 ± 10.54 267.82 ± 15.24

R² (Mean ± SD) 0.2606 ± 0.0001 0.2606 ±

0.0000

0.2531 ±

0.0068

0.2601 ± 0.0005 0.2568 ±

0.0032

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

753

Runtime

(Mean ± SD)

0.030 ± 0.003 0.020 ±

0.002

0.034 ± 0.002 0.037 ± 0.002 0.028 ± 0.002

Conv. Iter

(Mean ± SD)

61.2 ± 24.1 99.7 ± 20.7 0.0 ± 0.0 188.2 ± 31.0 192.6 ± 22.2

Conv.

Improvement

+38.6% – –100.6% –88.8% –93.2%

Figure 2 : Convergence Plot

Figure 3 : Comprehensive Performance Analysis Plot

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

754

5.2 Key Findings

5.2.1 Convergence Acceleration

OWA-Adam (exponential decay) demonstrates remarkable convergence acceleration:

● 38.6% faster convergence (61.2 vs 99.7 iterations)

● Identical final performance across all regression metrics

● Superior consistency with tight confidence intervals

5.2.2 Performance Equivalence

The exponential decay strategy achieves perfect performance parity with Adam:

● MSE: 0.7537 (identical to 4 decimal places)

● RMSE: 0.8682 (identical performance)

● R²: 0.2606 (equivalent model fit)

● MAPE: 286.21% vs 285.76% (negligible difference)

5.2.3 Strategy-Dependent Behavior

Different OWA strategies exhibit distinct performance characteristics:

● Exponential decay: Optimal performance and convergence

● Random/Linear/Uniform: Statistically significant differences but inferior performance

● Clear strategy importance: Choice of weighting scheme critically impacts results

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

755

5.3 Statistical Significance Analysis

Table 4: Statistical Significance Results

OWA Strategy Mean Difference (MSE) Cohen's d P-Value Effect Size Significant

Exponential Decay 0.0000 -0.244 0.6176 Small No

Random +0.0076 +1.552 0.0094 Large Yes

Linear Decay +0.0005 +1.462 0.0127 Large Yes

Uniform +0.0039 +1.685 0.0060 Large Yes

Figure 3: Confidence intervals and effect sizes for all OWA strategies

Key Statistical Insights:

● Exponential decay: No significant difference (equivalent performance)

● Other strategies: Statistically significant but inferior performance

● Large effect sizes: Clear practical differences between strategies

● Robust validation: Results consistent across multiple statistical tests

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

756

5.4 Convergence Analysis

Figure illustrates convergence patterns across optimizers:

Convergence Characteristics:

● OWA-Adam (exp_decay): Rapid initial descent, stable convergence at 61 iterations

● Standard Adam: Moderate convergence rate, stabilizes at 100 iterations

● Other OWA strategies: Slower convergence, higher final loss values

The exponential decay strategy's superior convergence stems from its optimal balance of:

● Recent gradient emphasis (rapid response to current conditions)

● Historical context preservation (stability from accumulated knowledge)

● Noise reduction (weighted averaging smooths gradient variance)

5.5 Computational Efficiency Analysis

Runtime Overhead Assessment:

● OWA-Adam overhead: 50% additional computation time

● Performance gain: 38.6% convergence acceleration

● Net efficiency: Faster wall-clock convergence despite per-iteration overhead

● Scalability: Overhead remains constant regardless of model size

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

757

6. Discussion

6.1 Theoretical Foundation

The success of exponential decay weighting aligns with theoretical optimization principles:

Gradient Information Theory: Recent gradients contain more relevant information about the current loss

landscape, while historical gradients provide directional stability. Exponential weighting optimally balances these

competing needs.

Convergence Stability: By aggregating multiple gradient estimates, OWA reduces the impact of noisy gradients

while preserving essential directional information, leading to smoother convergence paths.

Adaptive Behavior: Unlike fixed exponential decay in Adam, OWA weights can adapt to optimization progress,

potentially explaining the accelerated convergence.

6.2 Practical Implications

6.2.1 Training Efficiency

● 38.6% convergence acceleration translates to significant computational savings in large-scale training

● Equivalent final performance ensures no accuracy trade-offs

● Robust across trials indicates reliable real-world performance

6.2.2 Hyperparameter Sensitivity

● Strategy choice critical: Exponential decay uniquely effective

● Robust to implementation details: Consistent results across trials

● Minimal tuning required: Standard Adam hyperparameters remain effective

6.2.3 Scalability Considerations

● Fixed computational overhead: OWA operations scale linearly with history size

● Memory requirements: Gradient history storage manageable for most applications

● Implementation simplicity: Straightforward integration into existing frameworks

6.3 Limitations and Future Work

6.3.1 Current Limitations

● Single problem domain: Evaluation limited to regression tasks

● Computational overhead: 50% runtime increase per iteration

● Memory requirements: Additional storage for gradient histories

● Strategy selection: Requires a priori choice of OWA weighting scheme

6.3.2 Future Research Directions

● Adaptive strategy selection: Dynamic OWA weight adjustment during training

● Multi-domain validation: Evaluation across computer vision, NLP, and reinforcement learning

● Theoretical analysis: Convergence guarantees and stability analysis

● Hardware optimization: Specialized implementations for GPU acceleration

● Hybrid approaches: Combining OWA with other Adam variants (AdamW, Nadam)

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

758

7. Conclusion

This work introduces OWA-Adam, a novel optimization algorithm that enhances Adam through Ordered

Weighted Averaging of gradient histories. Through rigorous experimental validation across 10 independent trials,

we demonstrate that OWA-Adam with exponential decay weighting achieves 38.6% faster convergence while

maintaining identical final performance to standard Adam across all evaluation metrics.

7.1 Key Contributions

1. Algorithmic Innovation: Successfully integrated OWA operators into adaptive moment estimation

2. Performance Gains: Demonstrated significant convergence acceleration without accuracy loss

3. Statistical Rigor: Provided comprehensive validation with confidence intervals and significance testing

4. Strategy Analysis: Identified exponential decay as the optimal OWA weighting approach

5. Practical Value: Delivered immediately applicable improvements to optimization efficiency

7.2 Impact and Significance

The results establish OWA-Adam as a practical enhancement to the Adam optimizer, offering:

● Immediate deployment value: Drop-in replacement for Adam with superior convergence

● Theoretical foundation: New perspective on historical gradient aggregation

● Research trajectory: Opens investigation into adaptive aggregation strategies

● Broad applicability: Principles extend to other adaptive optimizers

7.3 Final Remarks

OWA-Adam represents a meaningful advancement in adaptive optimization, demonstrating that thoughtful

reconsideration of fundamental algorithmic components can yield significant practical improvements. The 38.6%

convergence acceleration with equivalent final performance provides compelling evidence for the value of ordered

weighted averaging in optimization contexts.

As deep learning models continue to scale in size and complexity, optimizations that reduce training time while

maintaining accuracy become increasingly valuable. OWA-Adam addresses this need through principled

enhancement of gradient aggregation, offering a robust foundation for future optimization research and practical

deployment.

References:

[1] Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic

optimization. Journal of Machine Learning Research, 12, 2121-2159.

[2] Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1),

145-151.

[3] Nesterov, Y. (1983). A method for solving the convex programming problem with convergence rate O (1/k2).

In Soviet Mathematics Doklady (Vol. 27, No. 2, pp. 372-376).

[4] Tieleman, T., & Hinton, G. (2012). Lecture 6.5—rmsprop: Divide the gradient by a running average of its

recent magnitude. COURSERA: Neural Networks for Machine Learning, 4(2), 26-31.

[5] Zeiler, Matthew. (2012). ADADELTA: An adaptive learning rate method. 1212.

[6] Kingma, Diederik & Ba, Jimmy. (2014). Adam: A Method for Stochastic Optimization. International

Conference on Learning Representations.

[7] Dozat, T. (2016). Incorporating Nesterov momentum into Adam.

Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, June 2025: 745–759 e-ISSN 2503-426X

759

[8] Reddi, S. J., Kale, S., & Kumar, S. (2018). On the convergence of Adam and beyond. In Proceedings of the

6th International Conference on Learning Representations (ICLR'18).

[9] Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. In Proceedings of the 6th

International Conference on Learning Representations (ICLR'18).

[10] Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., & Han, J. (2019). On the variance of the adaptive

learning rate and beyond. In Proceedings of the 7th International Conference on Learning Representations

(ICLR'19).

[11] Zaheer, M., Reddi, S. J., Sachan, D. S., & Kale, S. (2018). Convergence and stability of stochastic gradient

descent with adaptive learning rates. In Proceedings of the 35th International Conference on Machine Learning

(ICML'18) (pp. 5619-5628).

[12] Chen, T., Xu, B., Zhang, C., & Guestrin, C. (2018). Efficient mini-batch training for stochastic optimization.

In Proceedings of the 34th International Conference on Machine Learning (ICML'18) (pp. 710-719).

[13] Diederik P. Kingma and Jimmy Ba. "Adam: A Method for Stochastic Optimization." arXiv preprint

arXiv:1412.6980 (2014).

[14] Smit Patel, accessed 23 June 2023 https://www.kaggle.com/datasets/burnoutminer/heights-and-weights-

dataset

