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Abstract: Information flexibility and confidentiality have become significant challenges as medical information 

management increasingly relies on digital platforms. The centrally controlled structures of current medical 

systems are problematic due to their vulnerability to information breaches, inefficiencies, and lack of 

transparency. Establishing consensus in distributed networks while maintaining flexibility and security presents 

numerous obstacles. To address these issues, this study proposes a Privacy-Preserving Blockchain Framework 

(PPBF) combined with a Dynamic Elastic Consensus Protocol (DECP) for secure and sustainable handling of 

medical information. The PPBF leverages advanced cryptographic techniques such as homomorphic encryption 

and zero-knowledge proofs to safeguard sensitive medical data. DECP dynamically adapts to network conditions 

to enhance throughput and reduce delays during the consensus process. The proposed system aims to deliver a 

flexible, decentralized, and secure system capable of efficiently managing large volumes of medical information. 

Research findings indicate that the framework outperforms existing transaction throughput, flexibility, and 

security solutions. The proposed system demonstrates up to a 40% improvement in consensus efficiency while 

preserving patient data privacy and achieves over 95% accuracy in maintaining data integrity. This paper presents 

a robust approach to overcoming existing challenges in secure information management and establishes a 

foundation for advancing blockchain-based applications in healthcare. 

Keywords: Dynamic Elastic Consensus Protocol, Privacy-Preserving Blockchain, Secure Healthcare Data 

Management, Scalable Blockchain Solutions, Homomorphic Encryption, Zero-Knowledge Proofs, Decentralized 

Healthcare Systems, Data Integrity, Cryptographic Techniques, Healthcare Data Privacy. 

1. INTRODUCTION 

In recent years, there has been a growing focus on the application of blockchain technology in 

conjunction with tamper-proof and traceable medical Internet of Things (IoT) systems to 

enhance safety and security. Researchers are actively investigating the development of 

blockchain-based secure IoT technologies in healthcare to protect the confidentiality of shared 

healthcare data and ensure the reliability of smart healthcare devices [1]. While several 

challenges remain demonstrate the significant potential of blockchain to improve the safety 

and reliability of healthcare IoT applications. Decentralized organizations must collaborate 
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effectively within blockchain-based medical services to ensure the continuous operation of 

these systems [2]. To mitigate the risk of malicious services and performance degradation, 

efficient incentive mechanisms are essential. By using incentives and penalties encourage 

participants to provide high-quality services reduce the risk of information leakage and 

manipulation and prevent resource misuse and harmful competition [3]. 

Reputation evaluation is a common basis for designing incentives in blockchain-powered 

medical service platforms. A dynamic reputation score is created through a behavioral 

assessment framework takes into account the participants' past conduct [4]. Blockchain-based 

medical service delivery systems with incentive mechanisms lacks sufficient integration of 

feedback incentives for blockchain consensus processes and comprehensive reputation 

evaluation designs for multiple entities [5]. The absence of a robust multifaceted evaluation 

system could undermine fairness and reduce user engagement. Insufficient consensus 

mechanism upgrades might result in reputation evaluation being poorly connected to the 

distributed ledger can decrease user participation in the consensus process [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Architecture of existing EHR security 

The drive to improve patient outcomes, operational efficiency, and service quality is propelling 

the digital transformation of the healthcare sector. At the heart of this evolution are Electronic 

Health Records (EHRs) store sensitive patient data and are essential for modern healthcare 

delivery [7]. Challenges arise due to the increasing volume of data, rising cyber threats, and 

stricter regulatory requirements, necessitating scalable, secure, and efficient EHR management 

systems shown in Figure 1 [8]. Blockchain can simplify numerous healthcare tasks such as 

maintaining comprehensive patient histories enabling patient-centric electronic physician 
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records, remote monitoring, tracking medical equipment, improving digital health record 

accessibility, and ensuring privacy protection [9]. The present research explores the potential 

of blockchain to offer secure, private, and reliable network communications for EHR exchange 

systems. This rise in healthcare security incidents has been a key driver for blockchain adoption 

in the sector [10]. 

Blockchain can be implemented in various forms confidential, public, and permissioned. Public 

blockchains such as Ethereum operate with an anonymous framework may not be suitable for 

businesses that wish to maintain privacy while conducting transactions. Private blockchains 

such as Enterprise Ethereum restrict access and prevent unauthorized individuals from using 

the network while all peers within the network are treated equally [11]. Hyperledger Fabric 

provide the necessary access control tools to address these concerns, allowing for more 

controlled interactions between participants. EHRs support the efficient and ongoing 

management of healthcare by securely storing, sharing, and allowing authorized users to access 

patient data [12]. This digital information can be quickly processed and transmitted to 

healthcare hospitals facilitating the delivery of high-quality care. EHRs contain essential 

information such as medical history, diagnoses, test results, treatments, and medications 

contribute to reducing errors, improving outcomes, and enabling more thorough analysis of a 

patient's condition [13]. Sharing of EHRs introduces privacy and security risks as these records 

are vulnerable during exchanges. Ensuring confidentiality in medical studies and healthcare 

organizations requires compliance with legal regulations and jurisdictions. Despite existing 

procedures remains a need to strengthen privacy protections at the organizational level.  

2. RELATED WORKS 

The increasing volume of health-related data in healthcare hospitals highlights the need for 

secure and reliable storage and transmission systems. EHRs have become an essential tool for 

managing patient information such as prescriptions, vital signs, lab results, medical history, 

and more [14]. In the past, the transfer of medical data was slow and limited applications 

hindered the seamless exchange of information across healthcare hospitals. As the internet 

became more widely accessible, cloud computing emerged as a solution to store and share 

medical data, enabling remote collaborative diagnostics [15]. Cloud-based EHR systems 

offering scalability and convenience introduced new challenges in terms of patient safety, 

confidentiality, and information breaches. These systems face issues related to interoperability, 

decentralization, and the difficulty of ensuring transparency and accountability. By offering 

secure, decentralized, and transparent data management, blockchain has gained traction in 

various industries such as healthcare [16]. Blockchain's potential to enhance data security 

provide seamless integration, and support real-time information sharing positions it as a leading 

solution to the ongoing challenges in healthcare data management. The surge in blockchain 

adoption in healthcare is reflected in global trends as illustrated by the rise in interest in 

blockchain for healthcare applications such as secure patient data sharing, interoperability 

between systems, and patient-centric solutions [17]. 

Numerous programs for healthcare providers to manage and integrate health information have 

already begun in countries such as US, Canada, and the EU. The Estonian case study serves as 

an example of how decentralized blockchain computing can be applied as a reliable solution to 
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address challenges in government and healthcare. A survey found that 70% of medical experts 

believe blockchain technology will have the most significant impact on medical use cases [18]. 

Maintaining security and confidentiality is crucial for envisioning seamless healthcare 

applications. Privacy-protection strategies for EHRs in cloud systems were examined. The 

following privacy needs were explored: accountability, anonymity, confidentiality, integrity, 

non-repudiation, unlinkability, authenticity, and auditability [19]. Divided privacy-protection 

strategies into two categories: cryptographic and non-cryptographic. Cryptographic techniques 

include homomorphic encryption, proxy re-encryption, searchable encryption, attribute-based 

encryption, and hierarchical predicate encryption. Non-cryptographic methods involve 

infrastructure subject to access control restrictions. This paper also discusses the safety and 

confidentiality needs of cloud structures to guarantee EHR security [20]. Blockchain-based 

safety and confidentiality strategies for exchanging health information across various 

stakeholders were investigated. Emphasized blockchain-based permissioned and 

permissionless EHR safety measures and discussed whether off-chain or on-chain storage is 

better for health information [21]. 

Safe ML and DL techniques for applications in medicine were reviewed. Categorized ML/DL 

applications in medicine into four areas: clinical processes, diagnosis, therapy, and prognosis. 

Investigated several safety and privacy risks in data-driven ML pipelines for medical 

applications. Highlighted several research problems, including comprehensible, distributed, 

and responsible ML, dataset annotation, and implementation on edge devices. To ensure the 

registration and maintenance of medical records examined the use of blockchain in the 

healthcare industry. Categorized existing work into areas such as digital identification, social 

information governance, social insurance, information management, safety, and patient-

healthcare information [22]. The survey of cloud-based blockchain-based EHR security. Other 

authors have used cloud computing and IoT to protect EHRs using blockchain. Investigated 

edge computing, cloud computing, and IoT to use blockchain for securing EHR systems. 

Further examined blockchain and AI in various application areas, including healthcare, smart 

cities, and smart services. EHRs have significantly enhanced patient decision-making, 

physician satisfaction, and the quality of healthcare services [23].  

Healthcare 5.0 is revolutionizing the delivery of healthcare. Healthcare 5.0 is a patient-centered 

approach that prioritizes proactive, individualized treatment made possible by cutting-edge 

technology. By providing comprehensive, real-time patient data that can be used to offer 

personalized treatment increase patient engagement, and improve clinical outcomes EHR 

systems help support this paradigm shift. EHRs provide real-time, patient-centered information 

that is immediately and securely available to authorized users [24]. By providing accurate, 

comprehensive and up-to-date patient data at the point of care EHRs enable the prompt retrieval 

of patient information for better-coordinated efficient treatment and secure electronic data 

exchange with patients and other healthcare providers. EHRs also enable healthcare 

practitioners to better manage patient care and provide higher-quality healthcare by helping 

them diagnose patients more accurately, reduce medical errors, and deliver safer treatments. 

EHRs facilitate professional communication, decision-making, and coordination among 

healthcare providers [25]. The inability of existing systems to simultaneously meet the critical 

needs of safety, capacity, effectiveness, and privacy in a rapidly evolving digital healthcare 
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ecosystem represents an academic gap in the safe and scalable management of medical 

information. Due to their single points of failure, the centralized healthcare information 

management systems currently in use are vulnerable to unauthorized access, data breaches, and 

cyberattacks [26]. Although blockchain technology offers decentralized and secure 

alternatives, existing blockchain systems face challenges such as low transaction throughput, 

high latency, energy inefficiency, and limited flexibility particularly when managing the 

massive, real-time demands of healthcare information. Dynamic nature of medical 

environments where sources of information and participants are constantly changing means 

that consensus mechanisms in current blockchain systems often fall short. To provide secure, 

real-time, and scalable medical information management limitations underscore the need for a 

novel framework that integrates advanced privacy-preserving techniques, scalable consensus 

procedures, and efficient data-sharing methods [27]. 

3. MATERIALS AND METHODS 

A new approach to addressing the urgent challenges of secure and scalable healthcare 

information management in the digital era is the DECP with PPBF shown in Figure 2. This 

framework overcomes the limitations of existing centralized systems prone to unauthorized 

access, security breaches and inefficiencies in managing the growing volume of sensitive 

medical information. By employing a dynamic elastic consensus algorithm, the proposed 

method enhances the flexibility of blockchain networks to handle fluctuating data volumes and 

varying participant numbers, ensuring scalability and efficient operation. Privacy-preserving 

techniques such as homomorphic encryption and zero-knowledge proofs safeguard patient 

privacy while enabling legitimate data sharing among stakeholders, researchers, and healthcare 

providers. The framework is designed to deliver high transaction throughput and real-time 

access to information without compromising security even in distributed environments. It 

addresses the shortcomings of existing blockchain systems such as high latency and limited 

scalability, through the integration of advanced cryptographic methods and consensus 

mechanisms, making it particularly suitable for large-scale healthcare ecosystems. Beyond 

enhancing patient confidentiality and data security, this approach promotes interoperability and 

seamless collaboration among healthcare institutions. It supports the development of intelligent 

healthcare solutions, personalized treatments, and informed decision-making driven by data. 

3.1 Dataset Description 

A wide variety of attributes that fully reflect patient data while maintaining security and 

confidentiality are contained in the dataset utilized for secure and scalable healthcare data 

management shown in Table 1. In addition to demographic data such as age and gender to aid 

in analyzing the information, each patient is individually recognized by their Patient ID. 

Standardized Diagnosis Codes (such as ICD-10) and comprehensive Treatment Details  include 

details on prescription drugs and therapies are used for organizing medical data. In order to 

ensure accountability, the dataset also contains organizational information such as Hospital ID, 

which keeps track of the healthcare hospitals involved, and Information Access Logs, which 

document who viewed patient records and when. In accordance with privacy laws, the patient's 

consent status is documented to show their agreement with information sharing. 
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Figure 2: Proposed Architecture 

 

 

 

Table 1: Dataset Description 

Feature Description Type Example Values 
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Patient ID Unique identifier for each patient in 

the dataset. 

Categorical P01234, P56789 

Age Age of the patient in years. Numerical 25, 46 

Gender Gender of the patient. Categorical Male, Female 

Diagnosis Code Standardized codes for medical 

diagnoses (e.g.., ICD-10). 

Categorical J45 (Asthma), E11 (Type 

2 Diabetes) 

Treatment Details Information about the treatment or 

medication prescribed. 

Textual "Metformin 500mg". 

"Physical therapy 

sessions" 

Hospital ID Unique identifier for the hospital or 

clinic providing care 

Categorical H01, H35 

Data Access Logs Records of when and by whom 

patient data was accessed. 

Timestamp 2024-12-15T09:35:00, 

2024-12-16T15:50:00 

Consent Status Indicates whether the patient has 

consented to data sharing. 

Binary Yes, No 

Blockchain Hash Unique cryptographic hash of the 

patient's data for secure storage in 

the blockchain 

Categorical 3e7a13lc.... 9c7a4a0b... 

Transaction ID Unique ID for data transactions 

within the blockchain framework 

Alphanumeric TXN09878, TXN54341 

Medical Imaging 

Data 

Links or IDs for associated medical 

images (e.g.. X-rays, MRIs). 

Categorical IMG01, IMG125 

Laboratory Results Clinical test results, such as blood 

tests, in standardized units. 

Numerical 5.7 mmol/L (Glucose). 

13.6 g/dL (Hemoglobin) 

Timestamp Date and time when the data was 

recorded or updated 

Timestamp 2024-12-15T11:00:00, 

2024-12-16T16:30:00 

Anonymized 

Location 

Generalized location of the patient 

(e.g.. city or region) without 

revealing specific addresses. 

Categorical New York, Los Angeles 

Insurance ID Unique identifier for the patient's 

insurance provider. 

Categorical INS01, INS45 

 

 

 

Table 2: Sample Data 
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Specifically designed for medical information administration, this example dataset guarantees 

an organized view of patient information, diagnosis, therapy, and blockchain safety precautions 

shown in Table 2. 

3.2 Problem formulation 

To design a secure, scalable, and efficient healthcare data management framework by 

integrating a DECP-PPBF. 

Healthcare Data Representation: Let the healthcare data from a patient be represented as 

𝐷𝑥 where: 𝐷𝑥 = {𝑃𝑥, 𝑇𝑥, 𝑀𝑥, 𝐿𝑥}  (1) 

Here: 𝑃𝑥: Patient identifier (anonymized for privacy); 𝑇𝑥: Timestamp of the data generation; 

𝑀𝑥: Medical data (diagnosis, treatment, lab results); 𝐿𝑥: Location of healthcare service 

provider. 

Privacy Preservation Mechanism: The privacy-preserving mechanism encrypts 𝐷𝑥 before 

blockchain storage: 𝐸(𝐷𝑥) = 𝐸𝑛𝑐𝑘(𝐷𝑥) (2) 
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where k is the encryption key, and Enc, is the encryption function. For privacy, 𝑃𝑥 is replaced 

with a hashed identifier 𝐻(𝑃𝑥): 𝐻(𝑃𝑥) = 𝐻𝑎𝑠ℎ(𝑃𝑥) (3) 

Consensus Protocol (Dynamic Elastic Consensus): The dynamic elastic consensus protocol 

ensures scalability and efficiency by adapting to network dynamics. Let N be the number of 

participating nodes, and 𝑇𝑐 the transaction throughput. The goal is to maximize throughput 

while minimizing latency L: 𝑚𝑎𝑥(𝑇𝑐) 𝑎𝑛𝑑 𝑚𝑖𝑛(𝐿) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑇𝑐𝛼
1

𝐿
   (4) 

The consensus is reached when a majority M of nodes agree on a block 𝐵𝑥 such that: 

𝑀 ≥ [
𝑁

2
+ 1]   (5) 

Blockchain Transaction Validation: A transaction 𝑇𝑖𝑥
 is valid if: 𝑇𝑖𝑥

= {𝐻(𝑃𝑥), 𝑇𝑥, 𝐸(𝐷𝑥)} 

(6)  

satisfies the following conditions:  

• Signature verification: VerifySig(𝑇𝑖𝑥
, 𝑘 )- True. 

• Timestamp order: 𝑇𝑥 > 𝑇𝑝𝑟𝑒𝑣 where 𝑇𝑝𝑟𝑒𝑣 is the last block's timestamp. 

Scalability Function: Scalability is modeled as the ability to process S transactions per second 

with increasing nodes N:  𝑆 =
𝑇𝑐

𝑁
    (7) 

Lemma: Privacy and Security Guarantees- The proposed framework guarantees privacy 

preservation if the encryption function 𝐸𝑛𝑐𝑘 and hash function Hash are computationally 

secure. 

Proof:  

1. The encryption 𝐸(𝐷𝑥) = 𝐸𝑛𝑐𝑘(𝐷𝑥) ensures that the data 𝐷𝑥 is only accessible to authorized 

entities possessing k. 

2. Hashing 𝐻(𝑃𝑥) =  𝐻𝑎𝑠ℎ(𝑃𝑥) anonymizes the patient identifier. Assuming Hash is a one-

way function, reversing 𝐻(𝑃𝑥) without 𝑃𝑥 is computationally infeasible. 

This problem formulation mathematically defines the key objectives and the mechanisms of 

the proposed framework, ensuring data security, privacy, and scalability in healthcare 

environments.  

3.3 Data Upload  

The Data Owner (DO) encrypts their data (MDx) and stores the encrypted data (EDx) with a 

Cloud Service Provider (CSP). The DO also stores the address of the encrypted data (addr) 

with the CSP. Everyone utilizes both the off-chain and on-chain storage models in the 

framework. As a result, there are two steps in the information upload method: uploading to the 

blockchain and storing to CSP. The logical progression of the information upload procedure is 

depicted in Figure 3. Encrypt the information in plaintext using effective symmetric encryption 

methods to guarantee secure storage. Utilize the intelligent contract key's public key to encrypt 

the symmetric key. To create the ciphertext for an exchange of keys, authorization, and the 



Eksplorium p-ISSN 0854-1418 

Volume 46 No. 1, May 2025:  281–293 e-ISSN 2503-426X 

312 

public key are required. Construct a storage transaction Timestamp (Ts) in the Security 

Boundary (SB) to control the on-chain information storage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The logical flow of data upload 

3.4 Storage in Cloud Service Providers (CSPs) 

In healthcare data management on Cloud Service Providers (CSPs), considerations for storage 

efficiency, redundancy, encryption, compliance, and cost are crucial.  

Data Storage Costs:  Let: S: Total storage required (in GB); 𝐶𝑢𝑛𝑖𝑡: Cost per GB stored (in 

$/month) 

Total Monthly Storage Cost: 𝑇𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑆 ×  𝐶𝑢𝑛𝑖𝑡  (8) 

Where 𝐶𝑢𝑛𝑖𝑡 is the cost offered by the CSP. 

Data Redundancy across Nodes:  Healthcare data often uses replication for fault tolerance. 

Let: 𝑁𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠: Number of replicas for redundancy;  𝑃𝑛𝑜𝑑𝑒_𝑓𝑎𝑖𝑙: Probability that a node storing 

data fails 
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Probability that all 𝑁𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 fail simultaneously: 𝑃𝑓𝑎𝑖𝑙_𝑎𝑙𝑙 = (𝑃𝑛𝑜𝑑𝑒_𝑓𝑎𝑖𝑙)
𝑁𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠   (9) 

For example, with a node failure probability of 0.01 and 3 replicas: 𝑃𝑓𝑎𝑖𝑙_𝑎𝑙𝑙 = (0.01)3 =

0.000001. This ensures data availability and fault recovery. 

Encryption Overhead in Data Storage:  Let: 𝐷𝑑𝑎𝑡𝑎 : Size of data to be encrypted (in GB); 

𝐸𝐴𝐸𝑆256: Time overhead of AES-256 encryption in terms of throughput 

Encryption Storage Overhead for AES-256 encryption: 𝐸𝐴𝐸𝑆256 = 𝐷𝑑𝑎𝑡𝑎 × 𝑅𝐴𝐸𝑆   (10) 

Where 𝑅𝐴𝐸𝑆 is the encryption throughput (e.g., 500 MB/s). 

Scalability of Storage in Healthcare CSPs: Let 𝛼 represent the growth rate of healthcare data 

per month. If initial storage is 𝑆0 then the data storage growth over time t: 

𝑆(𝑡) = 𝑆0  × 𝑒𝑎𝑡  (11) 

For instance, with an annual growth rate of 5% (𝛼 = 0.05): 𝑆(𝑡) = 𝑆0 ∗ 𝑒0.05×𝑡 This ensures 

scalable infrastructure planning. 

Data Retrieval Latency:  Let: 𝑅𝑛𝑜𝑑𝑒; Average response time to access a node; 𝑁replicas : 

Number of replicas stored across the cloud infrastructure. 

Total retrieval latency   𝑇retrieval = 𝑅node +
𝑆

𝑁replicas
  (12) 

More replicas reduce access latency, ensuring quick retrieval times. 

Compliance and Data Storage Efficiency: Healthcare storage must comply with standards 

like HIPAA (Health Insurance Portability and Accountability Act): 

Storage Efficiency 𝐸𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑢𝑠𝑎𝑏𝑙𝑒

𝑆𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑
   (13) 

Where 𝑆𝑢𝑠𝑎𝑏𝑙𝑒 is the usable storage, and 𝑆𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 includes redundancy and overhead. 

These considerations ensure secure, scalable, and cost-effective healthcare storage solutions in 

CSPs while maintaining compliance with data privacy regulations and fault-tolerance 

mechanisms 

3.5 Dynamic Elastic Consensus Protocol (DECP) with Privacy-Preserving Blockchain 

Framework  

Participation comprises a range of groups such as information along with information utilizers. 

Consent level, approval target, and approval duration are the three primary components of the 

dynamic consent rule that information providers, the primary party in this network have 

developed. Data providers can modify the parameters of the dynamic consent rule in addition 

to viewing medical information through application. The ledger contains the history of what 

information users have accessed or used their information is fully accessible to them. 

According to predetermined guidelines, any data utilizer can receive health examination data 

from data providers by utilizing the information utilizer's application. This program can enforce 

many management of information functions since hospitals are the primary source of hospital 

assessment information shown in Figure 4. A medical facility or individual must invest time 

and energy in health information is an intangible asset. Customers, service providers, 
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information carriers and others are all involved necessitating a procedure for the consent system 

that everyone can comprehend and agree upon intuitively.  

 

Figure 4: DECP secure flow of Healthcare data 

 

Figure 5: DECP-PPBF functions 

The term data type refers to the specific kind of information that data providers choose to share 

with other data users. Data providers have access to three types of data: (1) information 

obtained from hospital-level examinations, (2) data from tests conducted outside of hospitals, 

and (3) social and demographic information shown in Figure 5. Social and demographic data 
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such as age, sex, and residence serve as fundamental information. Out-of-hospital test data 

include results from simple medical examinations that data providers can perform at home 

using devices such as InBody analyzers, thermometers and other medical equipment. In 

contrast, hospital-level examination data are more detailed typically collected during medical 

visits and involve comprehensive diagnostic procedures. 

Algorithm: Dynamic Elastic Consensus Protocol (DECP) with Privacy-Preserving 

Blockchain Framework for Secure and Scalable Healthcare Data Management 

The objective of the protocol is to ensure secure, scalable, and privacy-preserving consensus 

among CSPs for managing healthcare data while maintaining compliance with security and 

privacy requirements. 

Step 1: Initialization: Initialize the network of CSP nodes N, where each node i stores 

healthcare data 𝐷𝑥. 

Define the consensus parameters: Number of nodes N;  Consensus weight 𝑊𝑥 for node x; 

Redundancy factor 𝑅𝑛𝑜𝑑𝑒 

𝑊𝑥(𝑡) =
1

𝑁
  (14) 

Each node's weight ensures uniform distribution initially. 

Step 2: Privacy-Preserving Data Encryption:  Each CSP encrypts its healthcare data D_{i} 

using Paillier Homomorphic Encryption to maintain privacy. 

Let: 𝐸(𝐷𝑥) be the encrypted version of healthcare data 𝐷𝑥 

Paillier encryption operates as follows: 

1. Generate a public key PK and private key SK. 

2. Encrypt each healthcare data entry 𝐷𝑥 using the Paillier algorithm: 

𝐸(𝐷𝑥) =  𝐸𝑛𝑐𝑃𝐾(𝐷𝑥) = 𝑔𝐷𝑥 × 𝑟𝑛 𝑚𝑜𝑑 𝑛2   (15) 

Where g and n are generated as part of the Paillier public key setup. 

Step 3: Dynamic Elastic Consensus Calculation: Each node collaborates to form a consensus 

based on data availability, node reliability, and latency. 

Let 𝑃𝑥 represent the performance metric for node x. 

Dynamic Consensus Weight Adjustment:  𝑊𝑥(𝑡 + 1) = 𝑊𝑥(𝑡) ×
𝑃𝑥

∑ 𝑃𝑦
𝑁
𝑦=1

   (16) 

Where: 𝑃𝑥 is a performance reliability measure calculated based on latency, availability, and 

node failure rate. 

Step 4: Distributed Blockchain Ledger Integration: Update the blockchain ledger L with 

encrypted healthcare data for immutability and traceability. Let: 𝐻𝑥(𝑡) Hash representing the 

encrypted healthcare data 𝐸(𝐷𝑥) on the blockchain. 

Blockchain Ledger Update:  𝐿𝑡+1 = 𝐻(𝐸(𝐷𝑥) ) + 𝐻(𝑊𝑥(𝑡) )  (17) 
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Where each transaction on the blockchain contains: Encrypted healthcare data; Consensus 

metadata 𝑊𝑥(𝑡) 

Step 5: Consensus Validation Across Nodes: Nodes communicate to validate consensus 

changes dynamically. Apply consensus validation checks: 

𝑉𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 = ∏ 𝑊𝑥(𝑡) ≥ 𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑁
𝑥=1    (18) 

Where: 𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the reliability threshold required to maintain consensus stability. 

Ensure that nodes i meet the consensus requirements to validate the updates across all CSPs. 

Step 6: Redundant Data Allocation Across CSPs: Healthcare data is automatically 

distributed with a redundancy factor 𝑅𝑛𝑜𝑑𝑒. Each node's storage allocation adheres to the 

formula: 𝑆𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = 𝑅𝑛𝑜𝑑𝑒 × 𝑆ℎ𝑒𝑎𝑙𝑡ℎ  (19) 

Where 𝑆ℎ𝑒𝑎𝑙𝑡ℎ is the data size allocated for healthcare storage. 

A Dynamic Elastic Consensus Protocol ensuring fault tolerance and scalability across nodes. 

Privacy-preserving encryption techniques (Paillier) to maintain data confidentiality. 

Blockchain ledger for immutable, transparent, and traceable healthcare data updates. These 

ensure secure, scalable, and compliant healthcare data storage and retrieval across cloud service 

providers with a high degree of performance and resilience against potential breaches or 

failures.  

Figure 6: DECP-PPBF Network based on Hyperledger Fabric 
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4. RESULTS AND DISCUSSIONS 

To store information on the blockchain and disseminate it to peer nodes, a smart contract based 

on Hyperledger chaincode was implemented. The blockchain system stores the hash values of 

medical information on-chain, while the actual medical information provided by data suppliers 

is stored off-chain, regulated by dynamic consent system rules. In DECP-PPBF, a consortium 

is formed by three entities: hospitals, information suppliers, and information users (Figure 6). 

The chaincode was modified to adhere to the DECP-PPBF by the data providers. Hospitals 

manage the transfer of information from general health examinations and maintain records of 

healthcare information transactions.  

  

(a) 

   

(b) 

Figure 7: Processing times (a) blockchain (b) edge nodes using proposed DECP-PPBF 

system 

Data users can access and compare health examination data hashes through the system. All 

three entities participate in the same channel (Channel 1) within the consortium. The ordering 

service node, Orderer1, is created after consultations among the participating entities. Further 

participation in the consortium can be established by modifying the configuration block in the 

ordering service includes details about peers, network policies, channels, clients, and channel 

policies. Orderer1 is responsible for building Channel 1, facilitating the sharing of information 

within the consortium, restricted to entities with aligned interests. 
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Figure 8: Comparison of block times and energy consumption in various blockchain 

networks 

The effectiveness of the proposed model for medicine is shown in Figure 7, where it 

outperforms conventional techniques in terms of median block processing time and median 

edge time required for processing. Figure 8 compares the energy usage and block time of 

several networks using blockchain technology. It includes the time required to construct and 

validate a new block and the average block duration. The proposed system has a very low 

latency usually a few seconds.  

 

Figure 9: Comparison of various blockchain models in terms of computational 

efficiency 
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(d) 

Figure 10: Performance of the proposed model in terms of (a) Latency (b) Throughput 

(c) Success rate (d) Network Utilization 

One of the most important metrics for assessing and choosing blockchain consensus algorithms 

is computational effectiveness. It gauges how well a system uses processing power to 

accomplish its goals. The computational performance of many blockchain architectures is 

contrasted in Figure 9. The proposed model's efficacy is displayed in Figure 10 in terms of 

latency throughput, success rate and network utilization performance measures.  

 

Figure 11: Load balancing in the proposed model as function of increasing nodes 

The proposed model's load balancing effectiveness gauges how evenly the network's burden is 

distributed across its nodes, is shown in Figure 11. To avoid bottlenecks and decreased system 

efficiency is essential. The framework first attains a load-balanced effectiveness of 1 with 50 

nodes, suggesting an ideal workload allocation. The system's flexible procedures to preserve 

operational efficiency are reflected in these modifications. It is important to maintain high load 

balancing effectiveness as the number of nodes increases scalability, utilization of resources, 

system stability and efficiency.  
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Table 3: Performance Measures 

System Consensus Latency (ms) Throughput (TPS) 

Proposed DECP-PPBF system 45 150 

PBFT Consensus 121 76 

Proof of Authority  91 121 

Federated Blockchain 86 111 

Raft – based consensus 151 51 

 

The proposed DECP-PPBF achieves low latency (45 ms) and high throughput (150 TPS) by 

dynamically adapting consensus mechanisms across cloud service nodes shown in Table 3. 

Privacy-preserving encryption and scalable node management contribute to better system 

resilience and performance.  

Table 4: Performance Measures 

System Scalability Efficiency Data confidentiality 

Proposed DECP-PPBF 

system 

High (Scales up to 

10000+nodes) 

96% End –to – End encryption 

PBFT Consensus Medium (up to ~500 nodes) 71% Partial Confidentiality 

Proof of Authority  High (~800 nodes) 86% Moderate Confidentiality 

Federated Blockchain Medium (Up to ~601 nodes) 81% Encryption – based security 

Raft – based consensus Low (~201 nodes) 66% No inherent confidentiality 

 

The proposed DECP-PPBF system offers superior scalability supporting 10000+ nodes to 

dynamic consensus adaptation across cloud service nodes shown in Table 4. It achieves an 

efficiency of 96%, ensuring quick consensus formation and transaction processing without 

incurring large computational overheads. End-to-end encryption ensures higher privacy 

protection, safeguarding healthcare data across nodes and storage. Other existing systems such 

as PBFT, PoA, and Raft-based consensus often lack complete end-to-end encryption 

mechanisms leading partial or weak confidentiality.  

Table 5: Performance Measures 

System Encryption Time 

(ms) 

Decryption 

Time (ms) 

Key Generation 

Time (ms) 

Proposed DECP-PPBF system 15 20 50 

PBFT Consensus 26 31 71 
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Proof of Authority  21 26 61 

Federated Blockchain 23 29 66 

Raft – based consensus 36 41 91 

The proposed DECP-PPBF system achieves faster encryption (15 ms), ensuring minimal delay 

in encrypting healthcare data shown in Table 5. It has a decryption time of 20 ms, 

outperforming existing methods while maintaining efficient data access. The proposed DECP-

PPBF system uses an optimized algorithm for key generation (50 ms) is quicker than other 

existing consensus-based methods. This comparison highlights the efficiency of the proposed 

DECP-PPBF system in cryptographic operations is crucial for ensuring timely and scalable 

data protection in healthcare management systems. 

5. Conclusions 

To address the challenges of secure and scalable medical information management, this study 

introduces the DECP-PPBF. Compared to existing consensus mechanisms, the proposed 

DECP-PPBF system demonstrates superior performance in terms of flexibility, efficiency, 

encryption speed, and data confidentiality. Experimental results show that the framework 

achieved improved key generation efficiency (50 ms) while significantly reducing encryption 

and decryption times to 15 ms and 20 ms, respectively. The framework integrates advanced 

cryptographic techniques with blockchain consensus protocols to ensure robust data privacy 

protections. It scales efficiently across extensive healthcare systems, maintaining the security, 

integrity, and transparency of data. The results highlight the system's resilience against attacks 

and its ability to handle high-throughput, low-latency operations, ensuring real-time data 

availability and processing. These findings underscore the potential of the proposed approach 

in practical healthcare scenarios, where system flexibility, compliance with confidentiality 

standards, and secure information transfer are critical. Future research can focus on integrating 

more advanced cryptographic primitives and enhancing consensus mechanisms to support even 

larger and more complex healthcare networks further improving data scalability and security 

across global healthcare service systems. 
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