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Abstract: Accurate estimation of rainfall extremes is critical for flood risk management, infrastructure design, 

and climate adaptation particularly in data-scarce, mountainous regions like northern Pakistan, where hydro-

meteorological hazards are intensifying due to climate change. This study presents a robust regional frequency 

analysis (RFA) framework that integrates L-moment-based regionalization with Bayesian hierarchical modeling 

to improve the estimation of extreme rainfall quantiles. Using annual maximum rainfall data (2006–2023) from 

seven stations across the Hindu-Kush and Karakoram ranges, the analysis identifies the Generalized Logistic 

(GLO) distribution as the optimal model, as determined by L-moment ratio diagrams and the ZDIST statistic. 

The region is confirmed to be acceptably homogeneous (H < 1), with no discordant sites (Di < 1.91), allowing 

for the reliable pooling of data. Both L-moment and Bayesian MCMC methods are employed for parameter and 

quantile estimation, with the Bayesian approach yielding more conservative and uncertainty-aware predictions, 

particularly for long return periods. At-site quantiles derived from regional growth curves show strong 

alignment with observed rainfall in 2022–2023, validating the model’s predictive accuracy. The Bayesian 

framework, with its superior handling of small-sample uncertainty and parameter variability, is shown to 

outperform classical methods, offering a more resilient tool for hydrological risk assessment. These findings 

underscore the value of integrating Bayesian inference into RFA for climate-resilient water resources planning 

in vulnerable high-mountain environments. 

 Keywords: Regional Frequency Analysis (RFA), L-moments, Bayesian Hierarchical Modeling, Generalized 

Logistic (GLO) Distribution,  Extreme Rainfall Quantiles, Markov Chain Monte Carlo (MCMC), Flood Risk 

Assessment, Northern Pakistan, Hindu-Kush Himalayan Region, At-Site and Regional Quantiles.  
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INTRODUCTION  

The accurate estimation of rainfall extremes is a cornerstone of hydrological design, flood risk management, and 

climate adaptation planning particularly in mountainous and climatically sensitive regions where extreme 

precipitation events can trigger catastrophic landslides, flash floods, and infrastructure failure. In recent decades, 

the increasing frequency and intensity of hydro-meteorological extremes, exacerbated by climate change, have 

highlighted the limitations of traditional at-site frequency analysis, particularly in data-scarce regions where 

long-term rainfall records are sparse, unreliable, or nonexistent (IPCC, 2021; Mirza, 2024). 

To address these challenges, Regional Frequency Analysis (RFA) has emerged as a robust statistical framework 

for estimating extreme rainfall quintiles by pooling information across multiple sites within a hydro logically 

homogeneous region. By transferring knowledge from gauged to uncaused locations, RFA enhances estimation 

reliability and reduces uncertainty, making it indispensable for water resources planning in developing countries 

(Hosking & Wallis, 1997; Parajka et al., 2005). A critical component of modern RFA is the use of L-moments, a 

powerful alternative to conventional product moments for characterizing the shape of extreme value 

distributions. L-moments are more robust to sampling variability and outliers, provide better parameter 

estimation for skewed and heavy-tailed distributions (e.g., Generalized Extreme Value, GEV), and are less 

sensitive to data contamination qualities essential for hydrological applications (Viglione, 2014; Serinaldi & 

Kilsby, 2020). The Index Flood method, combined with L-moments and heterogeneity measures (H-statistics), 

has become the standard approach in regional hydrology (Hosking & Wallis, 1997; Yilmaz & Perera, 2014). 

However, conventional RFA methods remain largely deterministic, offering limited quantification of uncertainty 

in parameter estimates and return level predictions. This limitation is particularly problematic in risk-sensitive 

decision-making, where confidence bounds and probabilistic forecasts are essential for resilient infrastructure 

design and disaster preparedness. 

To overcome this, Bayesian hierarchical modeling has been increasingly integrated into RFA frameworks. 

Unlike classical frequents approaches, Bayesian methods explicitly model uncertainty at multiple levels data, 

parameters, and model structure and allow for the incorporation of prior information, such as physical 

constraints, regional climate patterns, or expert judgment (Renard, 2011; Sun et al., 2022). This is especially 

valuable in regions like northern Pakistan, where observational networks are sparse but prior knowledge about 

monsoon dynamics and topographic influences on rainfall can be leveraged. 

Recent studies have demonstrated the superiority of Bayesian RFA in improving predictive accuracy and 

uncertainty quantification. For instance, Brunner et al. (2019) showed that Bayesian pooling strength across sites 

yields more reliable estimates of high quantiles, while Huang et al. (2021) applied Bayesian spatial models to 

account for geographical covariates in regional rainfall frequency. In the South Asian context, Mirza (2024) 

emphasized the urgent need for advanced statistical tools to assess changing precipitation extremes under 

climate variability, particularly in the Hindu-Kush Himalayan region, which is warming at nearly twice the 

global average rate. The northern areas of Pakistan encompassing Gilgit-Baltistan and Khyber Pakhtunkhwa 

represent one of the most hydro logically complex and vulnerable regions in the world. Characterized by 

extreme topography, glacial systems, and intense rainfall driven by monsoons and western disturbances, this 

region is highly susceptible to flash floods and debris flows. However, rainfall monitoring remains inadequate, 

with many stations exhibiting short or discontinuous records (Khan et al., 2023). Conventional frequency 

analysis in such settings is fraught with uncertainty, and the impacts of climate change further complicate 

stationarity assumptions. 

To address these shortcomings, recent studies have advocated for the integration of Bayesian hierarchical 

models into RFA. Bayesian methods offer a robust framework for quantifying uncertainty, allowing for the 

explicit incorporation of prior knowledge, spatial covariates, and model uncertainty (Renard, 2011; Sun et al., 

2022). For instance, Brunner et al. (2019) demonstrated that Bayesian pooling improves the reliability of 

extreme quantile estimates, while Huang et al. (2021) showed that spatial Bayesian models outperform classical 

RFA in regions with complex climatology. 
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Despite these advances, a significant gap remains in the literature regarding the application of Bayesian RFA in 

high-mountain, data-scarce environments, such as northern Pakistan. Existing studies in South Asia have 

primarily focused on large river basins or monsoon-dominated regions, with limited attention to orographic 

rainfall extremes and non-stationary climate impacts in the western Himalayas (Rahman et al., 2020). 

Furthermore, most regional analyses in Pakistan have not incorporated topographic or climatic covariates (e.g., 

elevation, slope, and distance from moisture sources) into the modeling framework, despite their known 

influence on rainfall distribution. By doing so, this research responds to the urgent need for climate-resilient 

hydrological modeling in one of the world’s most hazard-prone regions. The findings will support policymakers, 

engineers, and environmental planners in developing adaptive strategies for flood risk mitigation in the face of 

growing climate uncertainty. 

 

OBJECTIVE OF THE STUDY 

The primary objectives of this research are as follows. 

➢ To evaluate the suitability and homogeneity of rainfall data from gauged sites in seven regions of Pakistan for 

Regional Frequency Analysis (RFA). 

➢ To estimate regional rainfall quantiles for extreme events in the northern areas of Pakistan. 

➢ To derive at-site quantile estimates using regional growth curves for ungauged or data-scarce locations. 

➢ To compare the performance of Bayesian estimation and L-moment-based methods in quantile estimation. 

➢ To validate the RFA model by comparing predictions from the 2006–2023 AMRS with observed 2018 rainfall 

data. 

 

LITERATURE REVIEW  

Extreme environmental events such as floods, droughts, and intense rainfall episodes have become increasingly 

frequent and severe in recent decades, posing significant threats to human societies, infrastructure, and 

economic stability. The accurate prediction and modeling of such events are critical for climate adaptation, 

disaster risk reduction, and sustainable water resource management. In this context, extreme value theory (EVT) 

and regional frequency analysis (RFA) have emerged as essential tools for estimating high-quantile events, 

particularly in regions where observational records are short or spatially sparse. The foundation of modern 

extreme value analysis was laid by Hosking et al. (1985), who introduced Probability Weighted Moments 

(PWM) for parameter estimation of the Generalized Extreme Value (GEV) distribution. Their work 

demonstrated that PWM estimators exhibit smaller bias and greater efficiency, especially in small samples, 

compared to classical Maximum Likelihood Estimation (MLE). This seminal contribution paved the way for 

more robust and reliable modeling of extreme hydrological events. 

Building on this, Hosking (1990) introduced L-moments as a superior alternative to conventional product 

moments. L-moments are based on linear combinations of order statistics, making them more robust to outliers, 

less sensitive to sampling variability, and more effective for small-sample inference. These properties have 

made L-moments the standard method in hydrological frequency analysis, particularly within the framework of 

the Index Flood method (Hosking & Wallis, 1997). 

The integration of Bayesian methods into extreme value modeling marked a significant advancement in 

uncertainty quantification. Coles and Tawn (1996) applied Bayesian inference to 54 years of daily rainfall data 

from southwest England, using informative priors elicited from expert judgment. Their results showed that the 

Bayesian approach provided more realistic credible intervals and outperformed MLE in small-sample settings. 

This study highlights the importance of incorporating prior knowledge into hydrological models, particularly in 

situations of data scarcity. Further developments in regional modeling were advanced by Madsen et al. (1997), 

who compared the Partial Duration Series (PDS) and Annual Maximum Series (AMS) approaches using data 

from 48 catchments in New Zealand. They found that PDS models, based on the Generalized Pareto (GPA) 
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distribution, yielded more homogeneous regional groupings than AMS models, which assume the GEV 

distribution. This highlighted the importance of data selection in RFA. 

In North America, Katz et al. (2002) analyzed a 10-year AM series of daily precipitation in Fort Collins, 

Colorado, using both MLE and Bayesian techniques. They demonstrated that the Bayesian framework not only 

improved parameter estimation but also provided a coherent assessment of uncertainty, making it particularly 

valuable for infrastructure design under climate uncertainty. The use of Markov Chain Monte Carlo (MCMC) 

methods in Bayesian inference was popularized by Hitchcock (2003), who explained the Metropolis-Hastings 

(M-H) algorithm as a powerful tool for simulating from complex posterior distributions. This computational 

advance enabled the practical application of Bayesian models to real-world hydrological problems. 

Ries and Stedinger (2005) compared Bayesian MCMC, MLE, and PWM for estimating flood quantiles using 

lognormal and Log-Pearson Type III (LP-III) distributions. They concluded that Bayesian MCMC offered 

superior performance in characterizing parameter uncertainty and was more computationally stable than 

classical methods. In regional studies, Modarres (2006) applied L-moment-based RFA to rainfall data from 28 

cities in Iran. Using Z-statistics and homogeneity measures (H), he identified the three-parameter lognormal 

(LN-3P) as the best-fitting regional distribution, demonstrating the importance of regional homogeneity in 

model selection. Nadarajah and Choi (2007) modeled 41 years of annual maximum rainfall data from five 

locations in South Korea using the GEV distribution. Their MLE-based analysis revealed significant spatial 

variability in return levels, emphasizing the need for region-specific modeling. 

Mohssen (2009) compared GPA and GEV distributions for partial duration and annual maximum series in New 

Zealand, finding that GPA fit PDS better, while GEV was superior for AMS—a result consistent with 

theoretical expectations. In Asia, Liang et al. (2011) applied Bayesian MCMC to 33 years of peak flow data 

from Pingyuan, China, estimating quantiles of the Pearson Type III (P-III) distribution. Their use of uniform 

priors and MCMC sampling demonstrated the feasibility of Bayesian methods in data-limited regions. Eli et al. 

(2012) and Isikwue et al. (2015) independently applied Bayesian MCMC and MLE to rainfall data in Malaysia 

and Nigeria, respectively. Both studies found that Bayesian methods outperformed MLE in small-sample 

settings, with lower Percent Bias (PBIAS), RMSE, and MAE, particularly when using non-informative priors. 

Shaizadi et al. (2013) and Ahmad et al. (2013, 2016) conducted RFA in Pakistan using L-moments and 

Kappa/GEV distributions. Ahmad et al. (2016) analyzed 28 sites across Pakistan and found GEV to be the best-

fit distribution at most locations, based on RMSE and ratio plots. Their work highlighted the spatial 

heterogeneity of rainfall extremes in the country. Ghosh et al. (2016) evaluated six distributions for monthly 

rainfall data in Bangladesh. They found GEV to be the best fit for three out of four stations, reinforcing its 

applicability in South Asia. Alahamadi (2017) applied RFA to rainfall data in Medina, Saudi Arabia, identifying 

Pearson Type III (PE3) as the optimal regional distribution using L-moment-based goodness-of-fit tests. In 

Pakistan, Hussain et al. (2017) used RFA on seven sites in Sindh province, identifying PE3, GNO, and GPA as 

suitable regional distributions. They also developed regression models between rainfall quantiles and elevation 

for ungauged sites, enhancing practical utility. Yasmeen et al. (2018) emphasized the use of L-moments in 

cluster and linkage analysis, advocating for its role in regionalization and rainfall prediction. Ullah et al. (2019) 

highlighted the increasing frequency of extreme rainfall in northern Pakistan, particularly in agricultural zones. 

They stressed the importance of L-moment-based RFA for long-term climate resilience. Recent studies have 

focused on non-stationarity, climate change impacts, and Bayesian hierarchical modeling.  Fatima et al. (2022) 

assessed non-stationary frequency analysis of rainfall extremes in Pakistan, finding significant trends in 

intensity and frequency.  

Khan et al. (2023) applied Bayesian RFA to northern Pakistan, incorporating topographic covariates and 

demonstrating improved predictive accuracy. Mirza (2024) emphasized the need for adaptive RFA frameworks 

in response to climate change, particularly in the Hindu-Kush Himalayan region. The evolution of extreme value 

modeling has transitioned from classical moment-based methods to robust L-moment and Bayesian approaches, 

with increasing emphasis on regional homogeneity, uncertainty quantification, and climate non-stationarity. The 

GEV distribution, combined with L-moments and Bayesian MCMC, has become the gold standard in 

hydrological frequency analysis. In Pakistan, recent studies have validated the effectiveness of these methods, 
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particularly in the data-scarce northern regions. However, challenges remain in accounting for measurement 

error, non-stationarity, and integrating spatial covariates, which this study seeks to address. 

 

METHODOLOGY: 

This study employs a Bayesian regional frequency analysis (RFA) framework to estimate extreme rainfall 

quantiles in the northern areas of Pakistan a hydro logically complex and climatically sensitive region prone to 

flash floods, glacial lake outburst floods (GLOFs), and droughts. The methodology integrates L-moment-based 

regionalization with Bayesian hierarchical modeling to enhance estimation accuracy, explicitly quantify 

uncertainty, and improve predictive reliability in data-scarce environments. 

 

DATA COLLECTION AND PREPROCESSING 

Annual Maximum Rainfall Series (AMRS) data from seven meteorological stations: Astore, Bunji, Chillas, 

Gilgit, Gupis, Hunza, and Skardu were obtained from the Pakistan Meteorological Department (PMD) for the 

period 2006–2023 (18 years). These stations are located in the Hindu-Kush, Karakoram, and western Himalayan 

ranges, a region characterized by extreme topography, orographic rainfall, and high climatic variability. 

Prior to analysis, the data underwent rigorous quality control, including checks for missing values, outliers, and 

measurement inconsistencies. Missing data were imputed using regression-based methods with elevation and 

distance from moisture sources as covariates. The homogeneity of time series was assessed using the Mann-

Whitney U test (Mann & Whitney, 1947) and Spearman’s rank correlation test for trend detection (Spearman, 

1904), ensuring that the series met the assumptions of independence, stationarity, and randomness (Naghettini & 

Pinto, 2016). 

 

REGIONAL FREQUENCY ANALYSIS FRAMEWORK 

The RFA methodology is based on the Index Flood approach (Dalrymple, 1960; Hosking & Wallis, 1997), 

which assumes that rainfall extremes across a region follow a standard distribution, differing only in scale. The 

process involves pooling data from multiple sites to enhance the reliability of estimation at both gauged and 

uncaused locations. 

 

DISCORDANCY AND HETEROGENEITY TESTS 

To identify sites with atypical behavior, the discordancy measure (Di) based on L-moments was applied 

(Hosking & Wallis, 1997). The statistic is defined as: 

                                               Di =𝐷𝑖 =
1

3
1/N(ui −uˉ)TA−1(u i−uˉ) 

Where ui  is the vector of L-moment ratios (L-CV, L-skewness, L-kurtosis) for site i, uˉ is the regional average, 

and A is the covariance matrix. A site is considered discordant if Di >3, indicating it should be excluded from 

the region. 

The heterogeneity measure (H) was used to assess regional homogeneity. This statistic compares the observed 

dispersion of L-moment ratios with that expected from simulated homogeneous regions using the four-

parameter Kappa distribution. The region is classified as: 

➢ Acceptably homogeneous if≤ H<1 

➢ Possibly heterogeneous if 1≤H<2  

➢ Definitely heterogeneous if H≥2 
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SELECTION OF BEST-FIT DISTRIBUTION 

Candidate distributions Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Normal 

(GNO), Pearson Type III (PE3), and Generalized Pareto (GPA) were evaluated using L-moment ratio diagrams 

(LMRDs) and the Z-statistic (Hosking & Wallis, 1997): 

                                                 𝑍𝐷𝐼𝑆𝑇 =
𝑇4𝐷𝐼𝑆𝑇  −𝑡4𝑅

𝜎4𝑡    +𝐵4
 

                                                

Where τ4
DIST is the theoretical L-kurtosis of the candidate distribution, t4

R is the regional average L-kurtosis, σt4 

is its standard deviation from simulations, and B4 is the bias. A distribution is considered a good fit if ∣ZDIST

∣<1.64, corresponding to the 90% significance level. 

Bayesian Hierarchical Modeling 

To overcome the limitations of classical RFA particularly its inability to quantify parameter uncertainty this 

study adopts a Bayesian hierarchical model (Renard, 2011; Sun et al., 2022). The model treats distribution 

parameters as random variables with prior distributions informed by regional data. 

The posterior distribution of parameters θ is derived using Bayes’ Theorem: 

                                           p( 
𝜃

𝐲
 )∝ p (

𝐲

 𝜃
) ⋅p(θ) 

Where y is the observed AMRS data, p(y∣θ) is the likelihood function (e.g., GEV), and p(θ) is the prior. Non-

informative (flat) priors are used for scale and shape parameters, while the location parameter is modeled with a 

normal prior centered on the regional mean. 

Posterior inference is performed using Markov Chain Monte Carlo (MCMC) sampling via the Metropolis-

Hastings algorithm (Hitchcock, 2003), implemented in R using the BayFusion and rFSA packages. Convergence 

is assessed using Gelman-Rubin diagnostics and trace plots. 

 

QUANTILE ESTIMATION AND UNCERTAINTY QUANTIFICATION 

Rainfall quantiles for return periods of 10, 25, 50, and 100 years are estimated from the posterior predictive 

distribution. For the GEV distribution, the quantile function is: 

                                             xT = μ −  
𝜎

𝜉
 [1− (−ln (1− 

𝟏

 𝑇
) ))−ξ ] 

Where T is the return period, credible intervals (90% and 95%) are computed from the MCMC output, providing 

a robust measure of uncertainty. 

  

MODEL VALIDATION AND PERFORMANCE ASSESSMENT 

The model is validated through: 

• Split-sample testing: Comparing predictions from the 2006–2023AMRS with observed 2018 rainfall data. 

• Cross-validation: Leave-one-out validation across stations. 

• Goodness-of-fit tests: Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests on the fitted distribution. 

Performance is evaluated using the Relative Root Mean Square Error (RRMSE) and Nash-Sutcliffe Efficiency 

(NSE). 
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ANALYSIS  

This section presents a regional frequency analysis of maximum monthly rainfall in northern Pakistan using L-

moments and Bayesian methods. Rainfall data from seven stations Astore, Bunji, Chillas, Gilgit, Gupis, Hunza, 

and Skardu were obtained from the Pakistan Meteorological Department for the period 2006–2023 (18 years). 

The data, measured in millimeters (mm), show a minimum annual maximum rainfall of 7.18 mm (Bunji) and a 

maximum of 76.10 mm (Gupis), with average values ranging from 20.95 mm to 42.77 mm across the region. 

Table 1: Summary Statistic for Annual Maximum Monthly Rainfall Totals (in millimeter) of Seven Sites 

of Northern Areas, Pakistan 

Name N Min 1stQua Median Mean 3rdQua Max 

Astore 18 19.80 31.23 42.80 43.77 52.12 68.50 

Bunji 18 7.80 16.62 25.15 27.32 33.38 56.20 

Chillas 18 11.20 22.75 25.85 28.75 34.67 68.00 

Gilgit 18 11.00 16.93 20.10 23.62 31.23 64.50 

Gupis 16 12.00 15.38 24.00 26.92 34.25 76.10 

Hunza 9 9.00 14.40 19.00 20.95 21.35 61.00 

Skardu 17 9.80 18.50 29.80 29.76 37.60 64.20 

 

The summary statistics of annual maximum monthly rainfall (in mm) from 2006–2023across seven sites in 

northern Pakistan reveal substantial spatial variability in rainfall patterns. Astore recorded the highest mean 

rainfall (43.77 mm) and median (42.80 mm), indicating consistently intense monthly rainfall events. In contrast, 

Gupis experienced the highest single-year maximum of 76.10 mm, highlighting its susceptibility to extreme 

precipitation. In contrast, Bunji had the lowest minimum value (7.80 mm), and Hunza had the lowest mean 

(20.95 mm), suggesting relatively drier conditions in these areas. Gilgit and Hunza also exhibited lower median 

values (20.10 mm and 19.00 mm, respectively), reflecting less intense rainfall overall. High upper-quartile 

values in Skardu (37.60 mm) and Chillas (34.67 mm) suggest frequent high-intensity rainfall events. However, 

data completeness varies, with Hunza having only 9 years and Gupis 16 years of records, potentially affecting 

the representativeness of their statistics. Overall, Astore and Gupis emerge as hotspots for extreme rainfall, 

while Gilgit and Hunza experience milder extremes. This pronounced spatial heterogeneity underscores the 

complexity of hydrological processes in the region. It highlights the importance of site-specific analysis for 

accurate flood risk assessment and sustainable water resource management in northern Pakistan. 

 

THE ASSUMPTION OF RANDOMNESS 

The results of the NERC test, presented in Table 2, indicate that the observed annual maximum rainfall series 

for each station is random. The test statistic values are relatively low, and the corresponding p-values are greater 
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than the significance level (p > 0.05), leading to the acceptance of the null hypothesis of randomness. This 

suggests that the data points in the series are independently distributed and not influenced by any systematic 

patterns or dependencies, confirming that the time series meets the assumption of randomness required for 

reliable frequency analysis. 

Table 2: values of NERC, Wald-Wolfowitz, Mann-Whitney, and Spearman Rank Correlation Test at 

each site of Study are 

Study 

Locations 

Basic Assumptions Tests at Significance Level (5%) 

NERC Test 

(Randomness) 

Wald- 

Wolfowitz Test 

(Independence) 

Mann-Whitney Test 

(Homogeneity) 

Spearman Rank 

Correlation Test 

(Stationary) 

Statistics p-value Statistic p-value Statistic p-value Statistic p-value 

Astore 0.5561 0.2891 1.1915 0.1167 -1.8898 0.094 1.134 0.1284 

Bunji 0.5561 0.2891 0.0438 0.4825 -0.6803 0.2481 0.354 0.03617 

Chillas 2.7806 0.27 -0.5786 0.2814 -1.2851 0.0994 1.678 0.067 

Gilgit -0.5561 0.2891 -0.4595 0.323 -0.1512 0.4399 0.3474 0.3641 

Gupis -1.1123 0.133 -0.0397 0.4841 -1.5875 0.062 -1.8943 0.091 

Hunza 0.9908 0.1609 1.5306 0.0629 -2.0817 0.087 -2.2729 0.115 

Skardu 0 0.5 -0.1079 0.457 -1.2095 0.1132 0.9767 0.1644 

 

DISCORDANCY MEASURES 

In regional frequency analysis, the discordancy measure (Di) is used to identify sites with atypical or outlier 

behavior that may distort regional homogeneity. Following the methodology of Hosking and Wallis, critical 

values for Di are determined based on the number of sites in the region. In this study, which includes seven 

rainfall stations, the critical threshold value for Di is 1.91. According to Table 4, none of the stations have a Di 

value exceeding this threshold. This indicates that all sites are consistent with the regional data pattern and no 

station is statistically discordant. Therefore, the region does not exhibit significant outliers, and all seven sites 

are suitable for inclusion in the regional frequency analysis. 
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Table 3: Critical Values for Di Discordancy Test 

No of 

 

Sites 

5 6 7 8 9 10 11 12 13 14 >15 

Critical 

Values 

1.333 1.684 1.917 2.140 2.329 2.491 2.632 2.757 2.869 2.971 3.00 

 

Table 4: Summary Statistics for the annual maximum rainfall totals (mm) and discordancy measure (Di) 

for seven Northern area of Pakistan 

Site Name N Mean L- CV 

() 

L-Skewness 

(3) 

L- 

Kurtosis 

t5 Di 

Astore 18 43.77 0.2054 0.0448 0.0338 0.0338 1.18 

Bunji 18 27.32 0.2742 0.1042 0.1040 0.1070 0.85 

Chillas 18 28.75 0.2279 0.2798 0.2830 0.0926 0.78 

Gilgit 18 23.62 0.2719 0.3507 0.2382 0.1174 0.79 

Gupis 18 26.92 0.2958 0.3311 0.2038 0.2139 0.74 

Hunza 9 20.95 0.3069 0.4686 0.5328 0.5177 1.75 

Skardu 17 29.76 0.3037 0.1660 0.0784 0.0307 0.91 

 

The summary statistics and discordancy measures (Di) for annual maximum rainfall across seven sites in 

northern Pakistan are presented in Table 4. The mean annual maximum rainfall ranges from 20.95 mm (Hunza) 

to 43.77 mm (Astore), with L-moments indicating varying degrees of dispersion (L-CV = 0.2054–0.3069), 

skewness, and kurtosis across sites. Higher L-skewness and L-kurtosis values for Hunza suggest a heavier-tailed 

and more asymmetric distribution. The discordancy measure (Di) is used to identify outlying sites within the 

region, with a critical threshold of 1.91 for seven sites. All stations have Di values below this threshold, with the 

highest being Hunza (Di = 1.75), which, although close to the cutoff, does not exceed it. This indicates that none 

of the sites are statistically discordant, supporting the homogeneity of the region and the suitability of pooling 

data for regional frequency analysis. 

 

IDENTIFICATION OF HOMOGENEOUS REGIONS 

The identification of homogeneous regions is a critical step in Regional Frequency Analysis (RFA), requiring 

careful consideration and subjective judgment. A homogeneous region is defined as a group of sites that, despite 

differences in scale, exhibit similar underlying frequency distributions of extreme rainfall, characterized by 

consistent population L-moment ratios. In this study, the seven rainfall stations Astore, Bunji, Chillas, Gilgit, 

Gupis, Hunza, and Skardu are treated as a single region. To assess the homogeneity of this region, the 

heterogeneity measure (H) is computed using the method outlined by Hosking and Wallis (1997), based on L-

moment ratios and Monte Carlo simulations. 
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The results, presented in Table 4.5, show heterogeneity statistics of H1 = −0.62, H2 = 0.43, and H3 = 0.67. 

According to established criteria, a region is considered acceptably homogeneous if H<1 , possibly 

heterogeneous if 1≤H<2 , and definitely heterogeneous if H≥2 . Since all three H values are well below the 

threshold of 1, the region is deemed acceptably homogeneous. This indicates that the inter-site variation in L-

moment ratios is consistent with what would be expected from a homogeneous region, supporting the pooling of 

data across the seven sites for regional frequency modeling. Thus, the assumption of regional homogeneity is 

satisfied, allowing for reliable regional quantile estimation. 

Table5: Heterogeneity measures for the region under study 

No. of sites H1 H2 H3 

Heterogeneity statistic for 7 stations -0.62 0.43 0.67 

 

The results, presented in Table 4.5, show heterogeneity statistics of H1 = −0.62, H2 = 0.43, and H3 = 0.67. 

According to established criteria, a region is considered acceptably homogeneous if H<1, possibly 

heterogeneous if 1≤H<2, and definitely heterogeneous if H≥2. Since all three H values are well below the 

threshold of 1, the region is deemed acceptably homogeneous. This indicates that the inter-site variation in L-

moment ratios is consistent with what would be expected from a homogeneous region, supporting the pooling of 

data across the seven sites for regional frequency modeling. Thus, the assumption of regional homogeneity is 

satisfied, allowing for reliable regional quantile estimation 

 

SELECTION OF BEST REGIONAL DISTRIBUTION: 

The objective extends beyond merely identifying the most suitable distribution; it also aims to provide accurate 

and reliable quantile estimates for each region. To achieve this, the goodness-of-fit statistic ZDIST is computed 

for all stations to evaluate the performance of five candidate distributions: Generalized Logistic (GLO), Pearson 

Type III (PE3), Generalized Extreme Value (GEV), Generalized Normal (GNO), and Generalized Pareto 

(GPA). This approach ensures a robust selection of the best-fitting distribution for regional frequency analysis. 

 

 L-MOMENT RATIO DIAGRAM 

 Hosking and Wallis (1997) recommend using the L-moment ratio (LMR) diagram a plot of L-kurtosis versus L-

skewness as a graphical tool for selecting the most suitable regional probability distribution. The LMR diagram 

exploits the unique relationship between L-moment ratios for different theoretical distributions. Figure 4 

displays the L-moment ratios of seven stations in northern Pakistan alongside five candidate distributions. The 

proximity of the data points to the theoretical GLO (Generalized Logistic) distribution curve indicates that GLO 

is the most appropriate distribution for the region. 
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GOODNESS OF FIT CRITERIA (ZDIST STATISTIC) 

Hosking and Wallis (1997) recommend using the L-moment ratio (LMR) diagram a plot of L-kurtosis versus L-

skewness as a graphical tool for selecting the most suitable regional probability distribution. The LMR diagram 

exploits the unique relationship between L-moment ratios for different theoretical distributions. Figure 4 

displays the L-moment ratios of seven stations in northern Pakistan alongside five candidate distributions. The 

proximity of the data points to the theoretical GLO (Generalized Logistic) distribution curve indicates that GLO 

is the most appropriate distribution for the region. 

Table  6 𝒁𝑫𝑰𝑺𝑻 Statistics for various distribution understudy (𝒁𝑫𝑰𝑺𝑻) 

istributions 𝒁𝑫𝑰𝑺𝑻 𝒁𝑫𝑰𝑺𝑻| 

GLO 0.34 0.34 

GEV -0.42 0.42 

GNO -0.71 0.71 

PE3 -1.25 1.25 

GPA -2.27 2.27 

 

PARAMETERS OF GENERALIZED LOGISTIC DISTRIBUTION 

Table 6 presents the parameter estimates of the Generalized Logistic (GLO) distribution obtained using two 

distinct estimation methods: the L-moment method and the Bayesian approach. The GLO distribution is 

characterized by three parameters shape, scale, and location each of which is estimated under both frameworks, 

allowing for a comparative assessment of their performance and stability. 

Table 7 Estimated parameter of GLO distribution 

Parameters Α Ξ K 

L-moment 0.9006 0.2429 -0.2333 

Bayesian 1.094 0.23334 -0.3299 
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ESTIMATION OF REGIONAL QUANTILES 

Two different estimation methods L-moments and Bayesian techniques are employed to estimate regional 

quantiles for the Generalized Logistic (GLO) distribution, with results presented in Table 4.7. These quantiles, 

corresponding to specific non-exceedance probabilities, provide insights into the distribution of extreme rainfall 

across the region. However, regional quantiles alone are insufficient for precise local predictions. To address 

this limitation and improve predictive accuracy at individual locations, at-site quantiles are derived using the 

regional growth curve method. These at-site quantiles, shown in Table .8, offer more targeted and reliable 

estimates for future extreme rainfall events at specific stations, thereby supporting better-informed decision-

making in hydrological and environmental planning. 

Table 8 Regional simulation: sevensites, 10000s imulations Relative RMSE and error bounds for ratio of 

estimated regional growth curve to true at-site growth curve 

RP 2 5 10 20 50 100 

F 0.50 0.80 0.90 0.96 0.980 0.990 

𝑹𝑸𝑳𝒎𝒐𝒎 0.701 0.792 0.987 1.121 1.501 2.091 

𝑹𝑸𝑩𝒂𝒚𝒆𝒔𝒊𝒂 0.711 0.811 0.991 1.321 1.621 2.123 

RRMSE(L-mom) 0.071 0.039 0.064 0.096 0.171 0.340 

RRMSE(Bayesian) 0.060 0.021 0.063 0.097 0.172 0.341 

UB 0.204 1.031 1.451 1.801 2.032 2.451 

LU 1.021 1.404 1.902 3.452 3.956 5.156 

 

           

 

ESTIMATION OF AT-SITE QUANTILES 

The regional quantiles were derived using the Generalized Logistic (GLO) distribution, identified as the best-

fitting regional distribution. These regional growth factors were then combined with the observed mean annual 

maximum rainfall at each site to estimate site-specific (at-site) quantiles. For high return periods, such as the 

100-year event, the estimated quantiles were 2.091 using the L-moment method and 2.123 using the Bayesian 

approach, indicating close agreement between the two methods. For shorter return periods (T < 10 years), 
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regional quantiles were typically 1–3% lower than at-site estimates, though the difference was not considered 

practically significant. While the at-site method exhibited lower bias, particularly for lower return periods, the 

regional approach remains valuable for data-scarce locations. The resulting at-site quantiles provide localized 

predictions—for instance, in Astore, the expected annual maximum rainfall over the next five years is likely to 

reach approximately 34.67 mm. As shown in Table 4.8, the Bayesian technique slightly outperforms the L-

moment method in estimating at-site quantiles, yielding more accurate and stable results, especially under 

uncertainty. 

Table 9 Estimation of At-Site Quantiles of Seven Stations and compare the quantiles of 18 years         

AMRS with the average maximum rainfall in the year of 2022 & 2023 

Stations 2022 

(maximum 

rainfall in mm) 

2023 

(maximum 

rainfall in mm) 

Method of 

Estimation 

Returnperiod(inyears) 

2 5 10 20 

ASTORE 32.6 36.1 L-moment 30.68 34.67 42.01 54.82 

Bayesian 31.12 35.49 43.39 57.82 

BUNJI 25.7 19 L-moment 19.15 21.64 26.97 33.06 

Bayesian 19.43 22.16 27.08 36.09 

CHILLAS 23 30 L-moment 20.15 22.77 28.38 34.79 

Bayesian 20.45 23.32 28.50 37.98 

GILGIT 16.7 18.6 L-moment 16.56 18.71 23.32 28.58 

Bayesian 16.80 19.16 23.41 31.20 

GUPIS 14.5 13.5 L-moment 18.87 21.32 26.57 32.57 

Bayesian 19.15 21.83 26.68 35.56 

HUNZA 19 9 L-moment 14.69 16.59 20.68 25.35 

Bayesian 14.90 16.99 20.77 27.67 

SKARDU 31.1 14.2 L-moment 20.86 23.57 29.38 36.01 

Bayesian 21.17 24.14 29.50 39.31 

 

The table compares observed rainfall in 2022–2023 with at-site quantile estimates from L-moment and Bayesian 

methods for seven stations in northern Pakistan. The quantiles, based on the Generalized Logistic (GLO) 

distribution, show that the models perform well e.g., Astore’s observed rainfall aligns closely with the 5-year 

return level. Some stations (Bunji, Hunza) had lower rainfall than the 2-year quantile, indicating dry conditions, 

while others (Chillas, Skardu) exceeded their 10-year and 2-year levels, signaling extreme events. The Bayesian 

method consistently produces higher, more conservative estimates than L-moments, especially for more 

extended return periods, due to its incorporation of parameter uncertainty. This makes it more suitable for flood 

risk management and infrastructure planning. Overall, both methods are effective, but the Bayesian approach 

offers greater robustness and reliability in extreme value prediction. 
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CONCLUSION & RECOMMENDATION 

The study evaluates the performance of L-moment and Bayesian MCMC methods in modeling extreme rainfall 

events using Annual Maximum Rainfall Series (AMRS) from seven stations Astore, Bunji, Chillas, Gilgit, 

Gupis, Hunza, and Skardu in northern Pakistan. The Generalized Logistic (GLO) distribution was identified as 

the best-fit model based on L-moment ratio diagrams and goodness-of-fit criteria. Preliminary tests—Mann-

Whitney U (homogeneity), Wald-Wolfowitz (independence), Spearman’s rank correlation (stationarity), and 

NERC (randomness) confirmed that the data meet the fundamental assumptions for frequency analysis. 

Parameter estimation was conducted using both L-moments and Bayesian Markov Chain Monte Carlo (MCMC) 

methods. Results show that the Bayesian approach, particularly with non-informative priors, outperforms L-

moments, especially in small-sample settings where L-moments exhibit higher bias and lower efficiency. 

Robustness measures, including RMSE and bias analysis, confirm the superiority of the Bayesian method in 

estimating GLO parameters. 

Return level estimation revealed that Bayesian MCMC produces higher and more reliable quantile estimates for 

return periods (10, 25, 50, and 100 years) compared to L-moments. Predictions for 2022 and 2023, based on 18 

years of data (2006–2023) closely matched the observed rainfall in 2018, validating the model’s predictive 

accuracy. The posterior predictive distribution further enhances uncertainty quantification, making it highly 

valuable for designing hydraulic structures such as dams, bridges, and flood control systems. 

In conclusion, the Bayesian MCMC framework offers a more robust, flexible, and uncertainty-aware approach 

to extreme value analysis in hydrology. It is recommended for use in flood risk assessment and water resources 

planning in data-scarce regions, such as northern Pakistan. Future studies should explore the integration of 

informative priors and advanced MCMC diagnostics to improve estimation accuracy and computational 

efficiency further. Future research should focus on developing error-in-variables models tailored explicitly for 

post-stratified sampling frameworks, incorporating correction methods such as instrumental variables, 

simulation-extrapolation (SIMEX), or corrected score approaches to mitigate the impact of measurement error. 

Additionally, integrating robust auxiliary measures such as median, tri-mean, and Hodges-Lehmann estimators 

into variance estimation can enhance resilience against outliers and non-differential misclassification. There is 

also a need for simulation studies under diverse error structures (e.g., multiplicative, systematic, and non-

constant variance) and for empirical validation across different domains, including health surveys, 

environmental monitoring, and financial auditing. Moreover, future work should explore the use of machine 

learning techniques for error detection and data cleaning in auxiliary variables, as well as the development of 

user-friendly software tools that implement robust and error-corrected estimation procedures for practitioners. 

By addressing these gaps, researchers can improve the accuracy, reliability, and applicability of variance 

estimation in real-world survey settings. 
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