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Abstract 

The rapid proliferation of Internet of Things (IoT) devices has increased the risk of cyber intrusions, 

necessitating robust and intelligent Intrusion Detection Systems (IDS). Traditional IDS methods struggle with 

the dynamic nature of IoT networks and the growing sophistication of cyberattacks. In this study, we propose a 

novel framework for anomaly detection in IDS using the Isolation Forest (IF) method on the RT-IoT2022 

dataset. The framework leverages unsupervised learning to identify anomalous network behavior and potential 

cyber threats in real-time. To enhance interpretability, we integrate SHapley Additive Explanations (SHAP) to 

provide explainable AI insights into the model’s decision-making process. The SHAP technique helps in 

understanding the contribution of individual features towards anomaly detection, thereby improving 

transparency and trust in the IDS. Our evaluation metrics, including precision, recall, F1-score, and confusion 

matrix analysis, demonstrate the efficiency of the proposed model in detecting malicious activities. The 

experimental results validate the effectiveness of our approach in identifying anomalies while ensuring model 

interpretability, making it a promising solution for securing IoT networks against evolving cyber threats. 

 

Keywords: Anomaly Detection, Intrusion Detection System, Isolation Forest, Explainable AI, SHAP, RT-
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1. Introduction 

The rapid advancement of the Internet of Things (IoT) has led to an exponential increase in connected devices 

across various domains, including healthcare, smart homes, industrial automation, and transportation. While this 

connectivity brings significant benefits, it also introduces substantial security challenges. IoT networks are 

highly dynamic, heterogeneous, and resource-constrained, making them vulnerable to a wide range of cyber 

threats, such as Distributed Denial-of-Service (DDoS) attacks, botnets, and unauthorized access. Traditional 

Intrusion Detection Systems (IDS) often rely on signature-based or rule-based approaches, which struggle to 

keep pace with the evolving nature of cyberattacks and the vast volume of network traffic generated by IoT 

devices. These limitations necessitate the development of intelligent, adaptive, and explainable intrusion 

detection mechanisms. 

In recent years, machine learning (ML)-based IDS solutions have gained prominence for their ability to detect 

previously unseen attacks and adapt to evolving threat landscapes. Among these approaches, anomaly detection 

techniques have shown promising results in identifying malicious activities by distinguishing normal network 

behavior from abnormal patterns. Unsupervised learning models, such as the Isolation Forest (IF), have 

demonstrated high efficacy in detecting anomalies without requiring labeled training data, making them well-

suited for IoT security applications. 

This research proposes a novel anomaly detection framework utilizing the Isolation Forest method to enhance 

intrusion detection capabilities in IoT networks. The framework is designed to analyze network traffic data from 

the RT-IoT2022 dataset and identify potential cyber threats in real time. To address the challenge of model 

interpretability, we integrate SHapley Additive Explanations (SHAP), an Explainable AI (XAI) technique that 

provides insights into the model’s decision-making process. SHAP helps security analysts and network 

administrators understand the contribution of individual network features to the anomaly detection process, 

thereby improving trust, transparency, and practical applicability in real-world cybersecurity settings. 
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The effectiveness of the proposed framework is evaluated using key performance metrics, including precision, 

recall, F1-score, and confusion matrix analysis. Experimental results demonstrate that the combination of the 

Isolation Forest model with SHAP explanations significantly enhances intrusion detection while maintaining 

interpretability. By providing a robust and explainable anomaly detection system, this study contributes to 

strengthening the security of IoT networks against emerging cyber threats. 

The rest of the paper is structured as follows: Section 2 discusses related work in IoT security and anomaly 

detection techniques. Section 3 presents the proposed methodology, including data preprocessing, model 

training, and the integration of SHAP explanations. Section 4 outlines the experimental setup and performance 

evaluation. Section 5 discusses the results, highlighting key findings and implications. Finally, Section 6 

concludes the paper and outlines future research directions. 

 

2. Literature Survey 

Several studies have explored ML and DL models for IDS implementation in IoT networks. Shone et al. (2018) 

proposed a deep learning-based intrusion detection system using a combination of autoencoders and Random 

Forest classifiers. Their model demonstrated improved detection capabilities for unknown attacks. Similarly, 

Mirsky et al. (2018) introduced Kitsune, an ensemble-based anomaly detection system leveraging autoencoders 

to identify network intrusions in real-time. These studies highlight the effectiveness of unsupervised learning in 

IoT security but lack interpretability, making it difficult to analyze decision-making processes. 

More recently, Khan et al. (2020) evaluated various ML models, including Support Vector Machines (SVM), 

Decision Trees (DT), and Artificial Neural Networks (ANN), for intrusion detection in IoT environments. Their 

study concluded that hybrid models combining multiple classifiers enhanced attack detection accuracy. 

However, ML models often face challenges related to high false positive rates and imbalanced datasets, 

necessitating further research in anomaly detection techniques. 

ii. Anomaly Detection in IoT Networks Anomaly detection methods, particularly unsupervised learning models, 

have gained traction due to their ability to identify previously unknown attacks without labeled data. Isolation 

Forest (IF), One-Class SVM, and k-means clustering are some of the widely used models for anomaly detection. 

Liu et al. (2012) introduced the Isolation Forest algorithm, demonstrating its effectiveness in outlier detection by 

isolating anomalies through recursive partitioning. This method has been successfully applied in cybersecurity 

applications, including IoT intrusion detection (Yousefi-Azar et al., 2017). 

Studies such as those by Yin et al. (2021) have explored the effectiveness of IF for detecting network intrusions 

in IoT ecosystems. Their research emphasized IF’s ability to efficiently isolate anomalous network behavior 

with minimal computational overhead. However, despite its success, IF-based IDS lacks explainability, making 

it challenging to understand the rationale behind anomaly classification. 

iii. Explainable AI for IDS in IoT Networks With the rise of AI-driven security solutions, explainability has 

become a crucial aspect of IDS research. Explainable AI (XAI) techniques, such as SHapley Additive 

Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), have been integrated into 

ML models to improve transparency. Lundberg and Lee (2017) introduced SHAP, a game-theoretic approach 

that assigns feature importance scores to enhance interpretability. 

Recent studies, such as those by Hussain et al. (2022), have applied SHAP to IDS models to explain feature 

contributions in attack detection. Their work demonstrated that SHAP-based explanations significantly improve 

trust in anomaly detection systems by providing human-interpretable insights into model predictions. Similarly, 

Al-Garadi et al. (2021) explored the use of XAI in deep learning-based IDS for IoT networks, highlighting its 

potential in improving cybersecurity decision-making. 

iv. Benchmark Datasets for IoT Intrusion Detection The effectiveness of IDS models depends heavily on the 

quality of benchmark datasets used for training and evaluation. Several datasets, such as NSL-KDD, 

CICIDS2017, and Bot-IoT, have been widely adopted in intrusion detection research. However, these datasets 

often lack realistic IoT attack scenarios. The RT-IoT2022 dataset, introduced by Kumar et al. (2022), provides a 
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comprehensive collection of network traffic data for IoT security research, covering a wide range of attack types 

and benign activities. Recent studies have utilized RT-IoT2022 to benchmark IDS models, validating their 

performance in real-world IoT environments. 

 

3. Proposed Methodology: 

In this study, we propose an unsupervised and semi-supervised anomaly detection framework to identify 

network intrusions using advanced machine learning techniques, applied to the CICIDS-2017 dataset. The core 

methodology is structured into five key stages: data preprocessing, model training, anomaly detection, 

comparative analysis, and explainability. 

 3.1 Dataset Description & Preprocessing 

The CICIDS-2017 dataset, a benchmark dataset for intrusion detection research, was first cleaned by removing 

any rows with missing values. The features were separated from the target label (Label), which originally 

comprised multiple class labels. These labels were binarized into two classes: BENIGN (0) and ATTACK (1) 

to suit the binary anomaly detection framework. Standardization of feature values was performed using Standard 

Scaler to ensure uniform scaling across all features. The dataset was then split into training and testing sets using 

an 80-20 ratio to preserve data integrity and enable evaluation. 

3.2 Isolation Forest for Anomaly Detection 

Isolation Forest, a tree-based ensemble model well-suited for high-dimensional anomaly detection tasks, was 

used as the primary model. The model was trained on the standardized training data with a contamination 

parameter of 0.1 to reflect the expected proportion of attacks in the dataset. Post-training, the model was used to 

predict anomalies on the test data. The output values were transformed such that -1 (anomalies) were mapped to 

1 (attacks), and 1 (normal) to 0 (benign), facilitating comparison with the ground truth.  

 



Eksplorium p-ISSN 0854-1418 

Volume 46 No. 2, June 2025:  1032–1041 e-ISSN 2503-426X 

 

1035 

The Isolation Forest algorithm detects anomalies by first constructing a collection of binary trees from the input 

data and then evaluating them based on the path lengths from root to leaf to compute anomaly scores. Structure 

of an Isolation Tree can be defined as follows: Consider a node T in an isolation tree constructed from CICIDS-

2017 Dataset. A node is either an external node (a leaf without children) or an internal node defined by: 

o An attribute q, 

o A split value p, 

o Two child nodes, Tl, Tr which partition databased on the condition q<p. 

During the construction of an isolation tree from a dataset X={x1,x2,...,xn}, the following recursive partitioning 

strategy is applied: 

• Randomly select an attribute q and a split value p. 

• Repeat until one of the following conditions is met: 

a. A predefined maximum tree height is reached. 

b. The data subset reduces to a single instance. 

c. All instances have identical values for the chosen attribute. 

An isolation tree is a proper binary tree, meaning every node has either no children or exactly two. Assuming all 

instances are distinct: 

• Each instance eventually gets isolated at an external node. 

• The number of external nodes is n, 

• The number of internal nodes are n−1, 

• The total number of nodes is 2n−1, leading to linear memory complexity with respect to n. 

Anomaly Detection Objective: 

The goal is to rank instances by their "anormality," with: 

• Shorter path lengths corresponding to more anomalous points. 

• Path length h(x): The number of edges traversed from the root to an external node for a data point x. 

• Anomaly score: Derived from the path length and indicates the likelihood of a point being anomalous. 

Given the structural similarity between isolation trees and binary search trees (BSTs), the expected average path 

length for unsuccessful searches in BSTs can be adapted for isolation forests. This estimation is: 

C(n) = 2H(n-1) - 
2(𝑛−1)

𝑛
      ----------(1) 

where H(i) is the ith harmonic number, approximated by: 

H(i) ≈ ln(i)+0.5772156649 

wr 0.5772… being Euler-Mascheroni constant. 

Anomaly Score Calculation: 

The anomaly score s(x,n) for an instance x is defined as: 

S(x,n) = 2
−

𝐸(ℎ(𝑥))

𝑐(𝑛)                       --------(2) 

where: 

• E(h(x)) is the expected (mean) path length of x across all trees, 
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• c(n) is the average path length baseline. 

Interpretation of s(x,n): 

• If E(h(x)) is small → s(x,n) approaches 1 → Highly anomalous. 

• If E(h(x)) is close to c(n) → s(x,n) is around 0.5 → Uncertain or moderate anomaly. 

• If E(h(x)) is large → s(x,n) approaches 0 → Likely normal. 

Thus: 

• Points with scores close to 1 are strongly anomalous. 

• Points with scores significantly below 0.5 are normal. 

• A uniform distribution of scores near 0.5 indicates no strong anomalies in the dataset. 

SHAP in Machine Learning 

The Shapley value method is a classic technique that equitably allocates the total payoff among its participants. 

Formally conceptualized, a cooperative game comprises a set of players, M = {1, . . . ,M}, collectively referred 

to as the grand coalition. The game is characterized by a set function, v : 2M → R, in which v(S) represents the 

payoff attributable to any coalition S ⊆M, with the assumption that v(∅) = 0. The computation of Shapley value 

for player i, denoted as ∅i(v), involves a weighted mean of the player’s incremental contributions across all 

conceivable coalitions:  

 

The computation of SHAP values includes an exhaustive analysis of the model’s predictive response across 

every feasible permutation of feature combinations. As the feature set expands, this computational task escalates 

in complexity, often exponentially. In scenarios where models incorporate a substantial number of features, the 

precise calculation of SHAP values becomes impractical. Consequently, approximation methodologies are 

frequently adopted. [12] propose an approximation technique employing Monte-Carlo sampling. Assume that x 

is the data point, z is a randomly selected data point from the dataset, M is the total number of samples, and j is 

the feature index for which we are computing the SHAP value. The vector 𝑥+𝑗
𝑚  represents the instance where 

feature j is taken from x and the remaining features are taken from z. Conversely, 𝑥−𝑗
𝑚  is similar to 𝑥+𝑗

𝑚   but 

includes the feature j from the sampled point 𝑥𝑗
𝑚. Using the notation introduced above, the formula then has the 

following form: 

   

where 𝑓(𝑥+𝑗
𝑚 ) signifies the prediction model’s output when certain feature values are substituted with those from 

a randomly selected data point z, with the exception of feature j. The vector 𝑥−𝑗
𝑚  closely resembles 𝑥+𝑗

𝑚 , however, 

it additionally incorporates the value𝑥𝑗
𝑚 derived from the sampled point. In essence, SHAP values, which are 

extrapolated from Shapley values in game theory, offer an intuitive and transparent framework for dissecting the 

influence of individual features within a machine learning model. 

1: Data preparation: 

2: for each column Xi of the data set D do 

3: Save Xi as a separate file/data frame 
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4: Building the Isolation Forest model: 

5: Model_IF←TrainIsolationForest(D) 

6: Using the SHAP model: 

7: SHAP_Weights←SHAP(Model_IF) 

8: Detecting anomalies: 

9: for each column Xi from D do 

10: D_minus_Xi ← D − {Xi} 

11: Model_IF←TrainIsolationForest(D_minus_Xi) 

12: Anomaly_Scores[i]←Model_IF.Predict(D_minus_Xi) 

13: Aggregating results: 

14: Final_Scores ← WeightedAverage(Anomaly_Scores, SHAP_Weights) 

15: Final prediction: 

16: Predictions←DetermineAnomalies(Final_Scores) 

17: Evaluating results: 

18: Evaluate(Predictions, metrics=[‘‘AUC’’,‘‘Accuracy’’, ‘‘Balanaced accuracy’’, ‘‘F1’’, ‘‘PRAUC’’, 

‘‘Precision’’, ‘‘Recall]) 

 

4. Performance Evaluation and Results Analysis 

To assess the efficacy of the Isolation Forest in detecting anomalous network traffic, several performance 

metrics derived from the confusion matrix were employed. The confusion matrix compares the predicted labels 

against the ground truth and provides a breakdown of classification outcomes in terms of: 

• True Positives (TP): Correctly identified attacks 

• True Negatives (TN): Correctly identified benign traffic 

• False Positives (FP): Benign traffic misclassified as attack 

• False Negatives (FN): Attacks misclassified as benign 

From these values, the following key performance metrics are computed: 

Accuracy 

Accuracy measures the overall correctness of the model: 

 

It gives the proportion of correctly predicted instances (both benign and attack) out of all predictions.  

 

Precision 

Precision quantifies the accuracy of positive (attack) predictions: 
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It indicates how many of the instances labeled as attacks were actually attacks. 

 

Recall (Sensitivity / True Positive Rate) 

Recall measures the model's ability to detect all actual attacks: 

 

High recall means fewer attacks are missed. 

 

F1-Score 

F1-score provides a harmonic mean of precision and recall, especially useful in imbalanced datasets: 

    

It balances the trade-off between precision and recall. 

ROC-AUC Score 

The Receiver Operating Characteristic - Area Under Curve (ROC-AUC) score summarizes the performance of 

the model across all classification thresholds. It reflects the probability that a randomly chosen attack instance is 

ranked higher than a randomly chosen benign instance. AUC ranges from 0 to 1, where a value closer to 1 

indicates better performance. 
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The performance of the Isolation Forest model was evaluated using standard classification metrics, including the 

confusion matrix, classification report (precision, recall, F1-score), and ROC-AUC score. These metrics provide 

a comprehensive view of the model's ability to detect attack traffic while minimizing false positives. 

To validate the robustness of the proposed approach, two additional models were implemented for comparison: 

• One-Class SVM (OC-SVM): A support vector machine trained in a one-class setting, assuming all 

training data to be normal, and detecting deviations as anomalies. 

• K-Means Clustering: A centroid-based clustering method, where the predicted cluster labels were 

compared against the true class labels to approximate the classification performance. 

Both models were evaluated using the same classification metrics to ensure fair comparison. This multi-model 

evaluation allows for insight into the relative strengths of each approach in the context of intrusion detection. 

Model Explainability Using SHAP& Visualization 

It is important to note that all these methods, which modify the way a forest is constructed, can potentially be 

adapted for use with the descriptive approach based on SHAP proposed in this article. This is possible because 

SHAP treats the Isolation Forest model as a black box, extracting information about the importance of 

individual attributes on prediction outcomes using SHAP values. 

To enhance the interpretability of the Isolation Forest model, SHAP (SHapley Additive exPlanations) values 

were employed. SHAP provides insight into the contribution of each feature towards the model’s predictions. A 

summary plot of SHAP values was generated, helping to identify key features that influence the detection of 

attacks. This component is critical for practical deployment in cybersecurity environments, where understanding 

the rationale behind detections is essential for trust and actionability. 

A confusion matrix heatmap was visualized using seaborn to provide a clear depiction of classification 

outcomes. This visual tool aids in quick understanding of the model’s predictive performance across actual and 

predicted labels. 

These metrics collectively offer a comprehensive view of the model’s ability to distinguish between normal and 

attack traffic, while also accounting for false alarms and missed detections. This evaluation framework ensures 

that the model is not only accurate but also reliable in real-world network intrusion scenarios. 

 

5. Conclusion and Future Scope 

This study presents an effective and interpretable anomaly detection framework for Intrusion Detection Systems 

(IDS) in IoT networks using the Isolation Forest (IF) method. By applying this unsupervised learning technique 

on the RT-IoT2022 dataset, the model successfully identifies anomalous and potentially malicious behavior in 

real-time network traffic. The integration of SHapley Additive Explanations (SHAP) further enhances the 

transparency and trust in the system by explaining the influence of individual features on the detection outcome. 

Evaluation metrics such as precision, recall, and F1-score, along with confusion matrix analysis, affirm the 

robustness and accuracy of the proposed method. The results validate that the combination of IF and SHAP 

offers a scalable and interpretable solution for securing IoT environments against modern cyber threats. 
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Future Scope: 

Future research can focus on extending the model to classify different types of cyberattacks, not just binary 

anomaly detection. Implementation and testing of the framework in live IoT environments could provide deeper 

insights into its practical performance and scalability. Combining Isolation Forest with other machine learning 

or deep learning models (e.g., LSTM, Autoencoders) could enhance detection accuracy and handle more 

complex patterns. Research can also explore making the IDS energy-efficient to suit resource-constrained IoT 

devices. Utilizing advanced feature selection or dimensionality reduction methods may further optimize the 

model’s performance and reduce computational overhead. 
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