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Abstract: Video forgery detection is the significant process in digital forensics, especially now forgeries are 

becoming more advanced with sophisticated video formats. Detection of global and local forgeries can be 

performed with the help of innovative deep-learning architecture, which utilizes spatial-temporal inconsistencies 

on low resolution or highly compressed video inputs. To effectively detect the global and local forgeries a new 

framework with Multi-Scale CNN (MS-CNN), Motion Aware Temporal Modeling (MAT), and Spatio-Temporal 

Attention (SAT) mechanism is proposed. This has the ability to handle different video qualities. With this 

framework, the system is prepared with rich spatial details and irregular motion detection between frames by 

combining optical flow analysis with deep multi-scale spatial features, the system achieves higher accuracy in 

detecting tampered content without requiring region-level annotations. In order to show the evaluation of the 

proposed framework, experiments were carried out on FaceForensics++ and a customized Kaggle dataset. The 

accuracy of proposed work attained 97.9% training accuracy and 94.5% validation accuracy at each frame. The 

system results demonstrated and showed effectiveness in terms of average processing time, which took only 0.06 

seconds per frame. Binary forgery detection in video can be easily accomplished with this work claiming to take 

research further by providing a generalizable, real-world-ready detection pipeline that is also groundwork for 

future endeavors in forgery localization and type classification. 

Keywords: Video Forgery Detection; Multi-Scale CNN; Motion-Aware Temporal Modeling; Spatio-Temporal 

Attention; Deep Learning; DeepFake 

1. INTRODUCTION 

In the fast growing digital era, digital content has increased and videos have become 

the most important medium among those used in advertisement, information dissemination, 

entertainment, surveillance, and forensic analysis. Video forgery, digital content misuse issues 

often threaten the digital media.  The forgery in these aspects generates many challenges and 

different levels of complexity in the traditional forgery detection, because those techniques 

failed to notice these changes and left it as legitimate in Sharma et al.,(2023) [1]. Object 

insertion, background tampering, or even frame-level changes may be manipulated in some 

way, and with it, serious threats are posed against information authenticity by Diwan et 

al.,(2024) [2]. This has resulted in the emergence of video forgery detection into one of the 

most researched fields in the field of digital forensics and cyber-security. The traditional 

methodologies focused on manual features and frame based analysis that can never account for 

the changing temporal inconsistencies that arise during manipulations. This renders them 

inadequate in the context of low-quality/highly compressed content. To avoid these limitations, 

deep learning is used and it’s an alternative that can directly learn most useful spatial and 

temporal features from the dataset. The MSCNN extracts hierarchical spatial information 

related to different image resolutions from the frames, while optical flow is used to give a kind 

of motion modeling to pixels between two frames. In this way, these motion features can be 

fed into ConvLSTM (Convolutional Long Short-Term Memory) Shelar et al(2023) [3], which 

has the capability of sequential temporal patterns and anomaly finding. With these features, the 

new MS-CNN, MAT architecture can recognize any kind of abrupt or subtle tampering along 
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the duration of a video sequence effectively. This way of process improves the overall 

robustness and accuracy of the forgery detection. The first phase of the proposed system can 

simply collect binary classification labels (real or forged), which makes it free from time-

consuming voxel-level annotations. The further work classifies the type of forgery along with 

the localization and explainable features. The prime target of the proposed work is to have an 

abundant accuracy on forgery identification, and that does not require any supervision at the 

pixel level and can automatically classify forged videos based on spatial and temporal 

discrepancies. 

The paper contributes the following, which are; 

● Effective video forgery detection model is developed with multi-scale CNN, 

which has the ability to perform local and global forgery detection. 
● The motion aware temporal modeling is deployed to find the temporal features 

across various video qualities. 
● The implementation of spatio-temporal attention mechanism is performed to a 

weighted feature map for robust forgery classification. 
● A customized kaggle dataset is used in the experiment and evaluation process. 
● Innovative and improved future directions are given in the proposed paper. 
● The system provides various performance metric analyses and is compared with 

the existing DCNN model.  
● The proposed pipeline is lightweight and suitable for real-time execution, hence, 

fit for forensic and security purposes. 

 The further sections of this paper provide a literature review related to the video forgery 

detection domain and a comprehensive overview of the proposed video forgery detection 

framework is explained with the appropriate example results. The further section provides the 

experimental setup content, dataset specifications, and evaluation metrics employed to assess 

the proposed work performance in terms of various metrics. The results and discussion part 

given the accuracy and other evaluation results for frame-level forgeries. The final section of 

the paper gives the conclusion and future research directions to further enhance forgery type 

classification and explainable features in video forensics. 

2. LITERATURE REVIEW 

In recent years, the area of video forgery detection has received notable publicity with 

the emergence of deepfake technologies that permit a fake video to be produced by 

manipulating or synthesizing visual content. This has motivated the development of several 

techniques for the identification of manipulated videos by observing spatial or temporal 

inconsistencies.  The previous studies for video forgery detection are categorized into different 

groups which are spatial-based, temporal based and hybrid techniques.  Some researchers 

provided better results by incorporating deep Convolutional Neural Networks (CNNs) and 

Motion-Aware Temporal modeling (MAT) techniques. Below, we review the related works 

and make an effort to point out various strengths and limitations of each method while 

identifying the gaps that the work intends to fill.  

2.1 Spatial-based Methods: 

  Spatial methods rely on detecting pixel inconsistencies, boundary mismatches, and 

interpolation errors within individual frames. As such, these techniques typically use CNNs to 

analyze frame-level artifacts and localize the manipulated regions. Earlier works mainly 
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concentrated on handcrafted features and shallow learning models in the detection of anomalies 

in video frames. However, the introduction of deep learning, specifically CNNs have proved 

to be a much more powerful tool in the detection of subtle changes in frame-level 

characteristics.  

  Bayar and Stamm (2016) [4] proposed a CNN-based method for detecting image 

manipulation, which was later extended to video forgeries. Their model concentrated on 

finding local discrepancies between manipulated and authentic regions of a frame. Matern et 

al.(2020) [5] built on this framework with a CNN architecture for the identification of 

suspicious regions achieving impressive results on datasets such as FaceForensics++. These 

methods are effective for discovering local manipulation, but do not take into account the 

temporal inconsistencies that usually come with the forgery.  

2.2 Temporal-Based Methods 

Temporal-based methods notice the frame-to-frame consistency in videos to catch those 

manipulations that do anomalies in motion patterns. They make use of optical flow, motion 

cues, or Recurrent Neural Networks (RNNs) to catch the inter-frame relationships. Li et 

al.(2018) [6] proposed using optical flow along with RNNs to detect video manipulation while 

encoding RNNs to model temporal dynamics. The method tracked the motion of the object and 

detected anomalies that might be pointers of tampering. Temporal methods are quite successful 

at detecting global forgeries, they often fail when it comes to localized manipulations or low-

resolution videos, which require a more robust analysis. 

2.3 Hybrid methods: 

Hybrid methods work considerably on manipulating features both spatially and 

temporally. Furthermore, Jaiswal et al.(2020) [7] proposed a hybrid method that incorporates 

3D CNNs and RNNs to analyze both spatial and temporal features at the same time. An 

interesting method is that by Choi, Jongil, et al. (2021) [8], who has constructed a 3D CNN 

model that amalgamates spatial and temporal features for deepfake detection. The method has 

significantly improved the detection of deepfakes, especially on video sequences where there 

were both spatial artifacts and temporal inconsistencies.  Dolhansky et al. (2020) [9] set forth 

an attention mechanism network for deepfake detection that dynamically concentrates on 

suspicious areas in the spatial and temporal domains. This helped the model enhance its ability 

to isolate and detect forgery areas with higher precision. These hybrid models might have their 

merits, but they are generally computationally expensive and become inaccurate with relatively 

low-res or heavily compressed videos. 

2.4 MAT Methods Capturing Motion: 

Recently, there has been an upsurge in interests for integrations of Motion-Aware 

Temporal modeling (MAT) to boost the efficiencies of video forgery detection systems. MAT 

techniques deal with the capture of motion inconsistencies that often lie subservient to detection 

by traditional CNNs. These methods focus on modeling the temporal dynamics of objects and 

identify inconsistencies in their motion across frames.  Zhang et al. (2020) [10] offered a 

motion-aware deep learning framework to capture motion inconsistencies based on optical flow 

in videos. By merging optical flow with CNN-based classifiers, this approach outperformed 

the conventional ones, especially to detect spatiotemporal anomalies in video sequences. Liu 

et al. (2021) [11] proposed a multi-scale temporal attention network for deepfake detection, 
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where their model used temporal attention to highlight frames with inconsistent motion 

patterns. Their work showed that combining attention with motion-aware features significantly 

improves forgery detection accuracy. Despite the success of MAT techniques, their integration 

with CNNs in hybrid architectures has often been limited. A lot of the existing methods have 

concentrated on the analysis of motion-related inconsistencies without synthesizing ways of 

dynamically combining spatial and temporal features, in order to improve the accuracy of 

detection.  

2.5 CNN and DCNN Applied in Detection of Forgery  

CNNs have become a backbone of current methodology of video forgery detection. 

Advanced days with the introduction of Deep Convolutional Neural Networks (DCNNs) have 

contributed meaningfully to improving the accuracy and robustness of the systems. Zhao et al. 

(2019) [12] introduced a framework for detecting deepfake videos based on a DCNN approach, 

applying frame-level and temporal features respectively. The framework fused layers of deep 

learning to extract both- fine spatial information and motion features, thus attaining a state-of-

the-art performance. The latest development enhancing the model's detection of manipulations 

at different spatial scales is the incorporation of multi-scale CNNs. Such elements  have shown 

that they're able to achieve a clear advantage over a traditional single-scale CNN by effectively 

capturing global and localized artifacts from the input videos.  Zhang et al., (2020) [13] 

introduced a Deep Convolutional Neural Network (DCNN) specifically tailored for object-

based forgery detection in advanced video sequences. Their approach begins with careful data 

preprocessing to account for modern video encoding standards, followed by a customized CNN 

architecture and training regimen that enhances the model’s sensitivity to tampered objects in 

each frame. Evaluated on the SYSU-OBJFORG dataset—the largest publicly available object-

forgery video corpus to date—their DCNN achieves state-of-the-art accuracy and robustness, 

outperforming prior convolutional approaches. However, by focusing solely on per-frame 

object manipulations, this method does not exploit temporal inconsistencies that often arise in 

forged videos (e.g., irregular motion or synchronization errors). Our proposed framework 

addresses this gap by integrating multi-scale spatial feature extraction, motion-aware temporal 

modeling, and spatio-temporal attention to capture both intra-frame artifacts and inter-frame 

anomalies, thereby extending the capabilities of existing DCNN-based forgery detectors. 

Despite the current advances in video forgery detection still face a multitude of 

unsolved issues. Most methods are either spatially or temporally oriented, and hybrid methods 

provide some extent of resolution; however, they suffer challenges associated with varying 

degrees of computational costs and degradation of performance under low resolution or 

compressed videos. Also, in most existing works, the combination of multi-scale analysis and 

attention mechanisms has yet to be studied properly, thus restricting applicability in managing 

dynamic and localized manipulations. 

3. MATERIALS AND METHODS 

A survey paper by P. Sujitha et al., (2025) [14] applied on deep learning techniques to 

detect video forgeries gives an overview and the appropriate future findings. From the findings, 

the proposed work carried out the effective, robust video forgery detection using advanced 

techniques. The proposed video forgery detection architecture is constructed with three main 

modules: Multi-Scale Convolutional Neural Network (MS-CNN), Motion Aware Temporal 

Modeling (MAT), and Spatio-Temporal Attention (STA). Each of these modules is decisive in 

extracting video frame spatial and temporal features, thereby overcoming the shortcomings of 
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the available methods, particularly in the low resolution of compressed videos. Under this 

architecture, the video detection task is treated as a binary classification problem for 

determining whether a video is real or forged, working with a conscious combination of spatial, 

temporal, and attention-based methods in locating subtle inconsistencies and manipulation 

artifacts. The workflow of the proposed video forgery detection is depicted in Figure 1. 

In the proposed system workflow shown in Figure 1, the video first extracts the frames and 

the frames undergoes preprocessing where it is broken down into individual frames and resized 

to a standard resolution. Optical flow is applied to capture motion between frames, helping 

identify unnatural changes over time. These frames are then passed through a multi-scale 

Convolutional Neural Network (CNN) that extracts features at different levels, capturing both 

fine details and larger visual structures. This enables the detection of subtle spatial artifacts, 

even in low-resolution videos. Temporal inconsistencies are further modeled using motion-

aware analysis, guided by optical flow data and enhanced with attention mechanisms to focus 

on regions with potential tampering. The spatial and temporal features are then fused using a 

fully connected network to form a comprehensive representation of each video. Finally, a 

classification layer analyzes this representation and determines whether the video is real or 

forged based on a probabilistic threshold, ensuring accurate and robust detection of 

manipulated content. 

 

Figure 1 Workflow of the Proposed Video Forgery Detection 
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3.1 Multi-Scale Convolutional Neural Network (MS-CNN) 

MS-CNN is the core module for spatial feature extraction in the proposed process. 

Different kernel sizes are incorporated into the convolution layer; this allows capturing fine- 

and coarse-grained features from the input frames. Thus, it captures features from large scale 

and small scale. The implementation of MS-CNN performed on a low-resolution forged video; 

this contains an object which is forged in the 0.05 seconds in the video footage for detection. 

With the help of MS-CNN, the multiple scale convolutions using 3×3 edge detectors, 5×5 

sharpen filters, and 7×7 blurs were generated and depicted in Figure 2. Initially in the CNN, 

there is single scale convolution followed. This increases the possibilities and limitations on 

key frame extraction. The demonstration on sample forged traffic video, the MS-CNN initially 

adopted into the architecture to differentiate the spatial features around the manipulated region. 

The optical flow computation between the key frames discovers the motion against the 

background.  The process of MS-CNN over the input video is as follows. 

Step 1: Multi-resolution Generation: The  input video I is initially extracts the set of frames 

and that input frame of Xi is resized to three varied resolutions formats like Low: X_112 ∈ 

ℝs¹¹²×¹¹² , Medium: X_224 ∈ ℝs²²⁴×²²⁴ and High: X_448 ∈ ℝs⁴⁴⁸×⁴⁴⁸ 

 

Step 2: Multi-scale Convolution: Each resolution is passed through convolution kernels of size 

k ∈ {3, 5, 7}, where 3×3 edge detection, 5×5 sharpening and 7×7 blurring. The Eq 1 represents 

the multi-scale convolution. 

Fₖ = σ(BN(Wₖ * X + bₖ)) (Eq 1) 

From Eq 1, where k ∈ {3, 5, 7} gives the multi-scale convolution. 

Step 3: Feature Concatenation: the feature merging across multi-scale convolution is 

represented in Eq 2. 

 

F = Concat(F_112, F_224, F_448) ∈ ℝ²²⁴×²²⁴×(C₁+C₂+C₃)  (Eq 2) 

 

 

Figure 2: Extracted key frame from input video I at different resolution sizes 

Figure 2 shows how the same video frame which was captured at 0.05 seconds appears 

at three different resolutions like low, medium and high. The value taken for low resolution is 

112×112, 224×224 for medium, and 448×448 for high-resolution frames. This process allows 

the detection of both fine and coarse-grained spatial features. This has the ability to detect the 

manipulation artifacts, because certain scales only have the visibility region. 
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Figure 3: MS-CNN Filter Outputs Simulation (3×3 Edge, 5×5 Sharpen, 7×7 Blur) 

Figure 3 represents the responses of three different convolutional kernels applied in the 

MS-CNN module, that are a 3×3 edge detection filter, a 5×5 sharpening filter, and a 7×7 blur 

filter. To improve the forgery detection, the convolution part enhanced the feature diversity by 

applying different filters on spatial patterns.  

    From the given video input, a key frame at 0.05 seconds revealed a forged object. At 

112×112, the object appears vague, but at 448×448, jagged edges and texture mismatches are 

prominent. 

3.2 Motion-Aware Temporal Modeling (MAT) 

The next module in the proposal MAT enables the temporal relationship capturing step 

between the consecutive video frames. In the pre-processing stage, the optical flow data will 

be obtained and utilized in the motion tracking process across the frames. The MAT module 

has the ability to detect temporal inconsistencies like misalignments between objects and 

unnatural movements. ConvLSTM(Convolutional LSTM) is applied in the proposal to learn 

the sequential dependencies between frames and this effectively detects the forgeries in the 

digital video content. The temporal aggregation process is defined in Eq 3: 

F_t = ConvLSTM(OF_{t-1}, OF_t, OF_{t+1})  (Eq 3) 

where F_t represents the features at time t, and OF denotes optical flow features. 

 

Figure 4: Optical Flow Visualization 

Figure 4 displays the optical flow computed between two consecutive frames (t and 

t+1) at 0.05s and 0.05s+Δ. The motion dynamics are detected from the flow vectors, the 

visualized HSV (Hue, Saturation, and Value) color space reveal motion dynamics in the scene 



Eksplorium p-ISSN 0854-1418 

Volume 46 No. 1, May 2025:  398–413 e-ISSN 2503-426X 

   405 
 

effectively. Frame tampering or object insertion forgeries can be identified from these Irregular 

and unnatural motion patterns moving inconsistently with the background. 

3.3  Spatio-Temporal Attention (STA): 

After computing optical flow movement between frames, the Spatio-Temporal Attention 

(STA) module is applied to focus more appropriately on regions of the video where 

inconsistencies may appear. This is a hybrid model, which includes both spatio-temporal 

attention mechanisms. The pooling layer process utilizes the spatial attention mechanism for 

finding important regions of each frame along with temporal attention highlighting process. In 

this, the frames can be detected with temporal inconsistencies. 

The spatial and temporal attention can be formulated as:  

 

A_s = Softmax(W_s * GAP(F_s))   (Eq 4) 

 

A_t = Softmax(W_t * GAP(F_t))   (Eq 5) 

where GAP refers to Global Average Pooling, W_s and W_t are learned weight 

matrices for spatial and temporal features, respectively. 

The attention-modulated features are then calculated as shown in Eq 6:  

F's = Fs * As ; F't = Ft * At   (Eq 6) 

where F_s is the Feature map from the MS-CNN module. A_s is the spatial attention 

map, which highlights the important regions of the frame where manipulation is likely. F_t is 

the Feature map from the MAT module using Optical Flow (OF). A_t  is the temporal attention 

map that highlights important time frames and motion sequences. The icon * represents 

element-wise multiplication. 

From the Eq 6, the raw feature maps are weighted with their corresponding attention 

maps. The A_s says the specific area looks suspicious, where A_t is the moment in time that is 

anonymous and suspicious. 

 

Figure 5: Spatial Attention Overlay 
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Figure 5 shows the spatial attention heatmap on the original frame f. to decrease the 

computational resources, the selective regions from the previous module are highlighted.  The 

high attention areas are highlighted with warmer colors and this gives the key about the 

suspicious regions to be manipulated. 

3.4 Video Forgery Detection 

The final module is the binary classification process, which can detect the video forgery by 

utilizing all the three modules such as MS-CNN, MAT and STA. This significantly reduces the 

resource utilization and facilitates low resolution video forgery detection with global and local 

features.  The final layer is the fully connected neural network with sigmoid activation function 

with final decision. 

The binary cross-entropy loss used in the classification can be formulated as: 

 

L = - (y * log(ŷ) + (1 - y) * log(1 - ŷ))  (Eq 7) 

 

where y is the true label (real or forged), and ŷ is the predicted probability of the video 

being real. 

 

Figure 6: Final Classification Output 

Figure 6 highlights the final classification result with the confidence score. From the 

low-resolution video frames the final result is detected with the suspicious region, which has 

dissimilar form in its motion and possibility to be forged. The result finds the class with a 

confidence score 94%. This illustrates the end-to-end output of the proposed system, 

terminating in a binary decision. The further work will give the multi-class classification with 

expandable features. 

Spatial attention heatmap versatility superimposed over the original frame further 

heightened research focus towards the suspect area-it would indicate that the STA module 

would allocate processing resources towards that area. At the end, with all extracted features 

fused and passed through the binary classifier, the model confidently marked the frame as 

"Forged" with 94 percent probability, an end-to-end pipeline that would serve to ascertain 

subtle yet telling signs of video tampering as much as in compressed or degraded quality 

footages. 
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4. EXPERIMENTS 

4.1 Dataset Details 

This section describes the dataset applied to test the proposed work. The evaluation process 

has been done on various benchmark dataset collected from different sources.  The custom 

Kaggle dataset is collected to demonstrate the binary classification. The previous methodology 

illustrated video has been collected from the Kaggle repository. For detailed evaluation the 

following datasets also incorporated, which are as follows: 

1.  FF++ (FaceForensics++) which Contains 1000 real and 4000 forged videos generated 

using four different forgery techniques. In this data repository, different compression 

level videos are available such as: C0 (raw), C23 (HQ), and C40 (LQ). 

2. Celeb-DF: Includes 890 real videos and 5639 forged videos. Forged samples were 

generated using enhanced DeepFake algorithms with minimal visual artifacts. 

3. DFDC (DeepFake Detection Challenge): Contains over 100,000 forged videos and 

23,000 real videos, providing a wide variety of manipulation techniques and complex 

scenes. 

4. Kaggle Video Forgery Dataset: this is a customized dataset which is collected from 

the Kaggle repository and modified according to the binary classification. The whole 

dataset will be incorporated in future works which will perform the multi-class 

classification with different forgery types like Insertion, Deletion, Duplication, 

Horizontal Flipping, Vertical Flipping, Rotation, and Zooming. The dataset contains 

9448 training samples and 2904 test samples in both real and forged classes. The videos 

are in .avi,.mp4 formats. 

Only the FF++ and Kaggle datasets were used for training and testing in this phase 

(binary classification: real vs. forged), while the Celeb-DF and DFDC datasets were reserved 

for cross-dataset evaluation. 

4.2 EXPERIMENTAL SETUP 

The proposed binary video forgery detection model was implemented using the 

TensorFlow, leveraging the computational power of an NVIDIA RTX 3090 GPU. The three 

major modules MS-CNN, MAT and STA incorporated into the model. These modules were 

trained and tested using Keras and the TensorFlow backend. The training process was 

optimized using Adam Optimizer, with an initial learning rate of 0.0001 and beta values set to 

(0.9, 0.999). The batch size was set to 32, which allowed the model to process 32 video frame 

sequences in each iteration. The training data consisted of both original and forged videos, 

where the forged videos were created by applying various manipulation techniques. But, for 

binary classification, we generalized the dataset into two major classes.For data augmentation, 

applied several transformations to the input frames to ensure robustness to different video 

conditions and prevent overfitting. These augmentations included random flipping, rotation, 

zoom, and cropping. The dataset was split into training and testing sets, with 80% used for 

training and 20% for testing. The total number of frames processed during training and testing 

is summarized in the following Table 1: 

Dataset Forged Original Total 

Training Set 8267 1181 9448 

Testing Set 2541 363 2904 

Table 1: Dataset split-up 
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The training phase involved the processing of video frames at three resolutions such as 

Low Resolution: 112×112, Medium Resolution: 224×224 and High Resolution: 448×448. Each 

resolution passed through its corresponding CNN branch, and the outputs were concatenated 

to form the final feature vector, which was then passed to the MAT and STA modules for 

motion-aware temporal modeling and spatio-temporal attention. The STA module refined the 

features by focusing on both spatial and temporal inconsistencies. 

5. EXPERIMENTAL RESULTS 

This section presents the experimental results obtained by evaluating the proposed 

video forgery detection framework. The framework was rigorously tested using a combination 

of real and forged videos, focusing on spatial-temporal inconsistencies for binary classification 

(real vs. forged). The evaluation includes both quantitative metrics and visual outputs to 

validate the performance and robustness of the proposed methodology across diverse and 

complex forgery scenarios. 

5.1  Performance Metrics : 

To comprehensively assess training efficiency and the classification performance 

compute standard evaluation metrics: training and validation Accuracy, Classification 

Accuracy, Precision, Recall, F1-Score, training/validation loss and AUC-ROC. These metrics 

were calculated for both training and testing phases.  

      5.2. Performance analysis 

The performance in terms of Accuracy, Precision, Recall, F1-score and AUC-ROC are 

shown below Table 2. 

Metric Value (%) 

Accuracy 97.02 

Precision 96.88 

Recall 97.41 

F1-Score 97.14 

AUC-ROC 98.03 

Table 2:  Performance of the proposed work. 

The model achieved high classification performance with a maximum accuracy of 

97.02% and an AUC-ROC score above 98%, indicating excellent discriminative ability in 

distinguishing between real and forged video content. 

 

Figure 7: The Performance Study of The Hybrid Model 
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Figure 8 :  Accuracy and Loss calculation 

The above figure  illustrates the progression of key metrics, including Training 

Accuracy, Validation Accuracy, Training Loss, and Validation Loss, over 20 epochs for the 

proposed model. Initially, the model starts with lower accuracy in both training and validation 

phases, as expected during the early stages of training. However, as training progresses, both 

Training Accuracy and Validation Accuracy steadily increase, demonstrating that the model is 

effectively learning from the data and generalizing well to new, unseen 

samples.Simultaneously, Training Loss and Validation Loss decrease over time, signifying that 

the model is reducing prediction errors during both the training and validation phases. The 

decline in loss values reflects the model's growing proficiency in minimizing the gap between 

its predictions and the true labels. By the 20th epoch, the model achieves a high maximum 

validation accuracy of 97%, with training and validation losses nearing their minimum values. 

This indicates that the model has reached an optimal level of performance, where it can make 

highly accurate predictions with minimal errors on both the training and validation datasets. 

The gradual improvement in both accuracy and loss values, combined with the achieved high 

accuracy, suggests that the proposed model is robust and has learned effectively from the 

provided dataset, making it suitable for real-world deployment in video forgery detection tasks. 

5.2.1 Ablation Study Table for Proposed Work 

The ablation study is a key methodology used to analyze and evaluate the individual 

contributions of various components of a model to its overall performance. For the proposed 

video forgery detection model, performs an ablation study to examine the impact of different 

components, such as Multi-Scale Convolutional Networks (MS-CNN), Motion-Aware 

Temporal Modeling (MAT), and Spatio-Temporal Attention (STA), on the model's accuracy. 

The following table presents the results of the ablation study for different configurations of the 

model: 
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Model Configuration Accurac

y 

Precision Recal

l 

F1-Score AUC-

ROC 

Baseline (Without MS-CNN, MAT, 

STA) 

83% 80% 85% 82.5% 0.91 

With MS-CNN Only 90% 88% 91% 89.5% 0.94 

With MAT Only 92% 90% 93% 91.5% 0.95 

With STA Only 94% 92% 95% 93.5% 0.96 

With MS-CNN and MAT 96% 94% 97% 95.5% 0.97 

With MS-CNN, MAT, and STA (Full 

Model) 

97% 95% 98% 96.5% 0.98 

Table 3: ablation study for different configurations 

In the above Table 3, each row represents a different configuration of the proposed model and 

its corresponding performance metrics. Here’s a breakdown of the results: 

● Baseline (Without MS-CNN, MAT, STA): This represents the model with no 

advanced techniques, serving as a reference. It achieved an accuracy of 83%, which 

indicates that the baseline model, while functional, lacks the sophistication needed for 

high-quality video forgery detection. 
● With MS-CNN Only: The performance improves significantly when the model is 

augmented with the Multi-Scale Convolutional Neural Networks (MS-CNN), boosting 

the accuracy to 90%. This shows the benefit of extracting multi-scale features to detect 

both fine and coarse artifacts in forged videos. 
● With MAT Only: When Motion-Aware Temporal Modeling (MAT) is included, the 

model’s accuracy increases further to 92%. MAT helps the model capture temporal 

relationships across frames, which is crucial for identifying forgery in videos that 

involve manipulation across multiple frames. 
● With STA Only: The introduction of Spatio-Temporal Attention (STA) further 

enhances performance, bringing the accuracy to 94%. STA helps the model focus on 

important spatial and temporal regions in the video, improving its ability to detect 

localized forgery. 
● With MS-CNN and MAT: Combining MS-CNN and MAT yields a model that 

performs at an accuracy of 96%, showing that both multi-scale features and temporal 

modeling complement each other to provide more robust video forgery detection. 
● With MS-CNN, MAT, and STA (Full Model): The final model, which integrates all 

three techniques, achieves the highest performance with an accuracy of 97%. This 

demonstrates that the combination of multi-scale features, motion-aware temporal 

relationships, and spatio-temporal attention provides the most effective approach for 

video forgery detection. 
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Figure 9: Ablation Study of Proposed Work 

    The results of the ablation study demonstrate the critical role of each component in the 

model’s performance. The inclusion of MS-CNN, MAT, and STA progressively improves the 

accuracy, precision, recall, F1-score, and AUC-ROC. The full model, which incorporates all 

three techniques, outperforms all other configurations, validating the effectiveness of the 

proposed multi-scale convolutional networks, motion-aware temporal modeling, and spatio-

temporal attention for robust video forgery detection. This comprehensive analysis provides 

valuable insights into how each technique contributes to the overall performance of the 

proposed video forgery detection system. 

Comparative Analysis: 

The proposed model was compared with an existing DCNN-based method, particularly 

focusing on performance in detecting object-based video forgeries. The results demonstrate a 

significant improvement in both detection precision and robustness to complex manipulation 

types. In the comparison between the existing DCNN-based system and the proposed MS-CNN 

+ MAT + STA-based model for video forgery detection, evaluating of three key frame-level 

accuracy metrics: Pristine Frame Accuracy (PFACC), Forged Frame Accuracy (FFACC), 

and Frame Accuracy (FACC) are carried out. 

1. Pristine Frame Accuracy (PFACC) measures the ability of the system to correctly 

classify unaltered, genuine frames. The proposed system outperforms the DCNN 

system with a PFACC of 97.3%, compared to DCNN's 95.2%, demonstrating its 

enhanced capability in identifying unaltered frames. 

2. Forged Frame Accuracy (FFACC) evaluates how accurately the system detects 

tampered or forged frames. The proposed system achieves a FFACC of 90.5%, 

outperforming DCNN's 86.7%. This indicates better performance in detecting video 

forgeries, highlighting the effectiveness of multi-scale CNNs and motion-aware 

temporal modeling in handling low-resolution or degraded videos. 

3. Frame Accuracy (FACC) is an overall measure of the system's accuracy in identifying 

both pristine and forged frames. The proposed system again leads with a FACC of 

94.8%, compared to DCNN's 91.9%. This improvement shows that the combination of 
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MS-CNN, MAT, and STA results in more robust and accurate forgery detection across 

the entire video sequence. 

Table 4: comparative analyses between DCNN and proposed in different metrics 

Metric DCNN (%) Proposed (%) 

PFACC 95.2 97.3 

FFACC 86.7 90.5 

FACC 91.9 94.8 

 

 

Figure 10: Frame Level Accuracy Calculation. 

 

6. CONCLUSION 

This paper proposes a robust video forgery detection system that leverages Multi-Scale 

Convolutional Neural Networks (MS-CNN), Motion-Aware Temporal Modeling (MAT), and 

Spatio-Temporal Attention (STA). The system effectively identifies both global and localized 

forgeries by analyzing spatial-temporal inconsistencies in video frames, outperforming existing 

DCNN-based methods in key performance metrics such as frame accuracy, precision, recall, 

and F1-score. The results show that the proposed model provides a more reliable and accurate 

detection of video forgeries, even in low-resolution or compressed videos, making it a valuable 

tool for real-world applications in video content verification. 

Future Work: 

For future work, the research will focus on the localization of forgeries within the video. 

This involves not only detecting forged frames but also identifying the specific regions that 

have been tampered with. The future work will extend this by integrating forgery type 

classification, where the system will categorize the nature of the forgeries, such as splicing, 

frame insertion, or object manipulation. These phases will further enhance the proposed 
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system’s capabilities, making it more comprehensive and adaptable for various video forgery 

detection scenarios. 
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