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Abstract—This paper demonstrates the use of transfer learning in biomedical NLP to identify sensitive data in 

electronic healthcare records. This research aims to improve the efficiency of multiclass classification of biological 

texts for sensitivity evaluation by combining two distinct feature representation methodologies. Multiple statistical 

weighting techniques, including as class probability (CP), inverse document frequency (IDF), and term frequency 

(TF), were considered for use with each component of the WE vectors in an effort to unify the two feature 

representations. Application of transfer learning is biomedical NLP opens up a great opportunity to exploit a lot of 

insights from the electronic medical records (EMR). BioALBERT, a variant of A Lite Bidirectional Encoder 

Representations from Transformers, was used in this investigation (ALBERT). It was taught with medical and 

biological databases. To classify all possible actions on the feature vector combinations we looked at, we developed 

a BioALBERT-based multiclass classification model. Experimental testing backs up the findings of the theoretical 

study of the proposed system. This research analyzed the usefulness and practicability of the proposed task using the 

MIMIC-III database. The MIMIC III and the PubMed dataset were utilized to construct the linguistic model. Our 

deep neural network model and other cutting-edge ML methods were used to test the efficacy of our weighted 

feature representation strategies for multiclass classification. 

Keywords-Natural language processing; transfer learning; Biomedical NLP; BioALBERT. 

I. INTRODUCTION 

The EHR comprises a patient's medical history, vitals, lab results, and doctor's notes (EHR). 

These data can help doctors and patients communicate better. Predictive analysis of EHR data 

improves clinical care. EHRs are the ideal resource for evidence-based care because they contain 
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detailed patient information such as symptoms, primary complaints, treatments, procedures, 

tests, final diagnosis, discharge drugs, care notes, and referrals. These indicators can all be 

tracked. EHRs can help clinical informatics specialists increase their knowledge. The Medical 

Information Mart for Intensive Care (MIMIC) database is being mined and analyzed in several 

ways. MIMIC-III (Johnson et.al, 2016) is a huge, publicly accessible collection of de-identified 

healthcare data from intensive care unit patients from a large tertiary hospital. Clinical notes and 

discharge summaries are unstructured data, unlike diagnosis and test results. Organized data can 

be analyzed with statistical tools and machine learning programmes in ways unstructured text 

can't. Each patient's medical record includes admissions, clinical, transfer, and discharge notes. 

Traditional applications are constrained because extracting knowledge from unstructured data 

involves substantial human feature engineering and mapping to ontologies.  

Text categorization (TC) has become an intriguing machine learning application in the 

previous decade. Classifying unknown data by finding commonalities between classes is TC's 

biggest problem. A classification model must complete "feature representation" before 

categorizing data. "Feature representation" explains the process of translating textual information 

into floating-point numerical vectors (Azar et.al, 2012; Hannah et.al, 2014; Jothi et.al, 2019; 

Jothi et.al, 2013; Anter et.al, 2013; Emary et.al, 2014; Banu et.al, 2017). More characteristics 

increase the classifier's pattern recognition (Meystre et.al, 2008; Bui et.al, 2022). Word 

embeddings and word bags are popular TC encoding methods. Both classification approaches are 

beneficial, but in different ways. The bag of words (BoW) technique lists the complete text, 

including phrases and documents. These words are recorded in a matrix regardless of 

grammatical, syntactic, or contextual relationships. BoW approaches include TF and TF-IDF 

analyses (TF IDF). Word embedding algorithms can uncover syntactic and contextual 

relationships (Cohen et.al, 2005; Chifu et.al, 2019; Chen et.al, 2021). Combining the two 

approaches may produce a more robust weighted feature representation model. When building a 

classification system, consider both approaches. Improved weighted feature representation can 

be employed in multiclass and multilabel classification systems. 

Transfer learning is a relatively recent but strong NLP approach. Less fine-tuning of datasets 

improves performance. Transfer learning's domain adaptability is achieved by translating 

semantically related words into identical vectors. Pre-training a model for a data-intensive 

activity creates generic knowledge and transferrable skills. This affects future tasks. In computer 



Eksplorium  p-ISSN 0854-1418 

Volume 46 No. 1, May 2025:  813–835 e-ISSN 2503-426X 

815 

 

vision applications, the transfer learning model is pre-trained on a large labelled dataset, however 

in NLP applications, unsupervised learning is used. Transfer learning could be used to train the 

network utilizing online text data. Transfer learning models for NLP include GPT, ELMo, 

BERT, XLNET, ALBERT, and RoBERTa (Stanfill et.al, 2010; Nigam, 2016; Huang et.al, 2019; 

Li et.al, 2018; Shickel et.al, 2017). Each model proved effective for some tasks but not others. 

Just as these models' tactics, methods, and procedures vary in effectiveness, so do their ultimate 

results. Transfer learning requires a systematic strategy. 

Increasing volumes of clinical reports and health literacy require more precise and generalized 

information extraction algorithms in biological NLP (BioNLP). Deep learning (DL) for NLP has 

revolutionized pre-trained language models (LMs) for BioNLP applications (NLP). Existing pre-

trained LMs perform poorly in biological environments because they were taught on wordnet, 

Wikipedia, etc. LMs have been used in biomedical NLP algorithms for a decade. These include 

ELMo, BERT, and A Lite BERT. BioNLP researchers trained these LMs on biological and 

clinical corpora to improve biomedical data performance. (Peters et.al, 2018; Tiwari et.al, 2021) 

This study applies transfer learning to biological NLP to evaluate data sensitivity in context. 

Biological (PubMed and PubMed Central) and clinical (MIMIC-III) corpora were fine-tuned for 

LM BioALBERT's domain-specific adaption. This research proposes and utilizes a weighted 

feature representation technique for classifying biological text. Our study combines WE and 

BoW to improve a biological multiclass text categorization system. First, we built a feature 

representation language model using MIMIC-III and PubMed data. We presented weighting 

techniques to blend the two feature representations. Our weighted feature representation method 

successfully classified biomedical texts after a battery of machine learning experiments.The 

remaining paper is structured as follows: The review of pertinent research that has lately been 

presented by a number of different academics takes up the second part of the paper. ALBERT 

and its biomedical variant are architecturally described in Section III. Section IV introduces a 

BioALBERT-based sensitivity retrieval mechanism for the supplied dataset. Section VII 

concludes the work after the experimental inquiry in part V reviews and discusses the 

effectiveness of the suggested technique. 

II. RELATED WORK 

Since deep learning can sift biological literature for useful nuggets of knowledge, several 

researchers have focused on undiscovered medical paradigms. NLP has enhanced processing 
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power. Biomedical NLP has impacted drug discovery and sequence estimation, for example. In 

the past decade, many advanced LMs have been developed for NLP (Erdil, 2019). When these 

approaches were applied to biomedical literature, the expected gains did not materialize, perhaps 

due to their initial training on generic corpora. BioNLP researchers resolved this restriction by 

training LMs on biological and clinical corpora and testing them on downstream tasks. 

Jin et.al, (2019) built BioELMo from PubMed abstracts. Beltagy et al. (2019) developed the 

Scientific BERT paradigm to recover biomedical data attributes as relational information across 

various entities, which encouraged the authors to argue for its use in scientific education. 

(SciBERT). Si et al. (2019)  trained BERT-based transfer learning models with clinical notes. 

Combining non-contextual and contextual word embedding improved named-entity-recognition 

for biological data. Numerous studies have used Peng et al (2019) Biomedical Language 

Understanding Evaluation (BLUE) score to measure their model's performance. Training LMs 

on clinical notes and PubMed abstracts improved bioNLP performance. BioBERT is the most 

common LM for biological applications because it pretrains on PubMed and PubMed Central 

data (PMC). The proposed model was modified to perform relationship extraction, named entity 

identification, and question answering (QA). PubMedBERT, Gu et al.'s (2020) new LM, used 

medical journal data. Using an LM trained on large corporas to translate topic-specific language, 

the suggested model's performance was evaluated. KeBioLM (Yuan et.al, 2021) was used to 

extract information from the UMLS corpus. Two BioNLP studies used KeBioLM. A domain-

specific LM outperforms SOTA on biological NLP tasks (Naseem et.al, 2021). 

Even if they've undergone previous training, BERT architecture makes retraining LMs costly and 

time-consuming. These LMs were only tested on a small fraction of BioNLP tasks, making 

generalization problematic. LMs have only been exposed to a limited collection of domain-

specific corpora during their first training, therefore greater exposure can increase performance. 

Many tasks require clinical and biological terminology. We believe that ALBERT, like BERT, 

can be trained to enhance BioNLP tasks. Pretraining ALBERT on biological and clinical notes 

and then modifying it to provide context-aware summaries can give beneficial results for data 

sensitivity evaluation. 

Word embedding research for classifying biological literature has been studied extensively. 

Sentence2Vec has enabled vector-based features. This method is like WEs (i.e., each vector 

represents a whole sentence instead of a word). Later, researchers tested the word embedding 
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method for multiclass classification of cancer corpus hallmarks. Sent2Vec WE was proposed in 

(Mikolov et.al, 2013). It combines sentences by averaging word vectors. A document-based WE 

system (Yuan et.al, 2021) can turn a single document into a vector. All document word vectors 

were combined. A recommendation algorithm (Jin et.al, 2019) helps discover comparable bug 

reports. The algorithm used similarity ratings from four vector approaches. Combining word 

embedding systems with TF-IDF weighting algorithms advanced word embedding research. 

Several weighting algorithms were utilized, including term frequency (TF), inverse document 

frequency (IDF), and smooth inverse frequency (SIDF) (SIF). Word embedding vectors collected 

all relevant word vectors for a particular document. Finally, we computed the word embedding 

vectors' weighted sums. IDF weighting won ROC and AUC.According to the research, a 

domain-specific WE is preferable in the biomedical industry. Many researchers have focused on 

improving and expanding WE infrastructure. Transfer learning can be a strong method for 

retrieving meaningful EHR data. 

III. ARCHITECTURAL FRAMEWORK OF ALBERT  

The expanding body of published biomedical literature, including clinical reports and health 

literacy, is facilitating the development of text mining algorithms. The goal of biological natural 

language processing (NLP) is to automate the process by which medical literature is sifted for 

references to diseases, drugs, genes, proteins, etc. Consequently, the improvement of methods for 

automatically detecting and extracting biological components is a critical step toward achieving 

this objective. Numerous text mining applications for biomedical NLP exist, such as the 

extraction of drug-drug interactions and disease-treatment correlations. The field of biological 

NLP has historically relied on feature engineering methods (e.g., lexicon-based, rules-based and 

statistics-based). Unfortunately, feature engineering relies heavily on domain knowledge, which 

biological NLP does not provide. 

As more people turn to Deep Learning (DL) to automatically extract the most difficult aspects 

of a data field, interest in Biomedical NLP has skyrocketed. Performance in biological NLP has 

benefited greatly by enhanced LM's ability to obtain the vector representation of each word in a 

sentence (Lan et.al, 2019). Recent state-of-the-art (SOTA) DL-based language models have 

shown SOTA superior performance in a variety of NLP tasks. NLP was modified using 

transformer models, most notably BERT. The problem of sparse annotation in text data was 

ultimately resolved. Since it is now able to make adjustments to trained models, there is no 
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longer a need to retrain whole new models from scratch. BERT (340M parameters), however, is 

a little out of reach because of its vast size. Spending a lot of time and energy on BERT inference 

runs is a need. Reduced in size and weight without sacrificing any of BERT's useful features, 

ALBERT is a more portable and convenient alternative. Compared to the widely used BERT 

framework, the ALBERT model requires far fewer inputs. Two parameter reduction methods are 

employed to address the primary challenges of scaling pre-trained models. To get started, we 

have a factorized parameterization of the embedding. Dividing the massive vocabulary 

embedding matrix into two smaller matrices allows us to clearly see the differences in scale 

between the vocabulary embedding and the hidden layers. This dissection makes it easier to 

increase the hidden size without considerably increasing the parameter size of the word 

embeddings. Layer-to-layer parameter sharing is the second strategy. This strategy prevents the 

parameter from increasing linearly with the size of the network. Both techniques drastically cut 

down on BERT's parameter count without sacrificing performance, vastly improving parameter 

efficiency. Training on the ALBERT configuration for big is 1.7 times faster and requires 18 

fewer parameters than the BERT setup (Devlin et.al, 2019). Regularization techniques used in 

parameter minimization strategies guarantees stable and transferable training. 

 

Figure1. Typical Transformer model  

The building's framework, depicted in Fig. 1, is a multi-headed and multi-layered 

Transformer. In the ALBERT encoder-decoder architecture, the decoder is concerned with the 

encoder's outputs while the encoder is concerned with itself. The bricks used to create this 

structure were stacked vertically. A feedforward network and a multi-head attention block make 

up each of these sections. Contextual data and embedding data at the word level require large 
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representations in the hidden layer. Explosive variables, however, increase with increasing depth 

of the buried layer. If V is the total number of tokens in the vocabulary and H is the depth of the 

hidden layer, then we require parameters of the form V*H.Through the ALBERT factorization 

method, the dimensionality of these word-level input embeddings is reduced. In this context, we 

assume that E is the factorised embedding size.At this point, the required number of parameters 

is approximately equal to V*E + E*H. 

The value of V is very large in most natural languages, allowing us to drastically reduce the 

number of parameters. While stacking multiple independent layers improves the models' learning 

ability, it also leads to a dramatic increase in redundancy. In many cases, characteristics that 

serve the same purpose are picked up by multiple tiers. Therefore, ALBERT is able to cut down 

on redundancy by sharing parameters across multiple tiers. A reduction in parameters is applied 

while the number of layers remains unchanged. Therefore, ALBERT is a relatively minor yet 

extremely beneficial alteration of BERT. It can reduce computational load and improve the 

effectiveness of language-understanding tasks in a number of contexts. 

 

IV. PROPOSED BIOALBERT BASED DATA SENSITIVITY EVALUATION FRAMEWORK 

Electronic medical records need a standardized system of document naming, linkage, and 

classification. Clients should be able to correctly identify the intended component of a request 

and be familiar with the data format of the given answer by using the EHR structure, which 

should be publicly available. The primary challenge of EHR interoperability lies in the 

development of a generic method for expressing any kind of healthcare data in a uniform data 

format. Methodical progress of the inquiry is shown in Figure 2. Our methodology incorporates a 

number of processes, including feature extraction, model training, and model testing. Spark was 

used for data preprocessing, and then Spark, Sklearn, and Gensim were used to extract the 

features. 

The models were trained and tested using Spark ML and Keras. 

a) Data Preprocessing 

A sizable database of patients who were admitted to the critical care units of a significant 

tertiary care hospital makes up the MIMIC-III dataset. This dataset contains the medical records 

of patients who received treatment in the intensive care units at Beth Israel Deaconess Medical 

Center between 2001 and 2012. The goal of this research is to identify relevant semantic 
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information in unstructured data. The whole dataset was used, but only the free-text clinic notes 

and the noteevents table were examined. Discharge summaries stood out from other forms of 

summaries because, in contrast to those of other types, they included free text and genuine facts. 

Any reference of patient classification was removed before being included in discharge 

summaries because they were written after the diagnosis was determined (ICD-9 codes). 

Table 1 lists the number of patients, hospital admissions, ICD-9 codes, and ICD-9 category 

counts from the MIMIC-III dataset. While noteevents and discharge summaries only cover the 

pertinent subgroups, MIMIC-III has access to the entire dataset. Methods we employed included 

the following: 

➢ Removed punctuation marks. 

➢ Removed numbers. 

➢ Normalized all characters into lowercase. 

➢ Word tokenization. 
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Figure 2. Proposed methodology 

b) Segmentation 

The method of distinguishing distinct sentences from a collection of words is known as 

sentence segmentation or sentence tokenization. Sentence segmentation is carried out with far 

more precision using the Spacy library, which was created for Natural Language Processing. 

Using the existing tokenization libraries and the CLS and SEP tokens, the sentences in the 

discharge summaries of the preprocessed dataset are segmented. According to Romanov et al.  

(2018), the real limit for the input layer in transformer models is 510 tokens, down from 512 

with the removal of the CLS and SEP tokens. The data must be condensed in order to be 

incorporated into the Transformer model because the average length of the MIMIC-III discharge 

summaries is 1,947 tokens, and only 11.67 percent of all papers are longer than 510 tokens. 

Despite the summaries' narrative style, the majority of the documents adhere to a standard 

Preprocessing 
Stage

•Output labeling over MIMIC-III dataset

•Conversion of words into lower-case

•Removal of special characters

•Separation of contraction

•Number canonization and word tokenization

Segmentation

•Removal of CLS and SEP tokens

•Shortening the data as per the compatibility of transformer model

•Using 510 tokens at a time to feed to the network

Feature 
Extraction

• Calculate Term Frequency - Inverse Document Frequency (tfidf)

• Utilize tfidf as a point of reference for the word2vec technique

• Derive Word vectors by providing the tokenized corpus as the input for the 
word2vec model

• Extract the context using Continuous Bag of Words (CBOW)

Model 
Training and 

Testing

• Pretraining of BioALBERT model by the information taken from PubMed 
abstracts and PMC notes

• fine-tuning of the model with the help of the discharge summaries that 
came from the gathered datasets

• Tuning of hyperparameters to attain the desired accuracy.
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format, which starts with a Chief Complaint and continues with a Historical Background section 

that provides details about the patient's social and ethnic backgrounds, past and current medical 

conditions, and other relevant information. A few subsections in Diagnostic tests and Relevant 

Results are more case-specific, and the overall structure is less uniform. The documentation is 

divided into two sections: "Discharge Instructions" at the end that details the conditions for the 

patient's departure from the hospital, and a "Brief Hospital Course" section in the middle that 

details the patient's stay in the intensive care unit. The Brief Hospital Course's content up to this 

point will be removed, and the remaining text will be used sequentially until all 510 tokens have 

been used. Those summaries were not included since the Brief Hospital Course was missing 

from 822 publications. 

c) Statistical Feature Representation 

Then, based on the tf-idf and CP values of every word in the corpus, the statistically 

weighted features are extracted. The word embedding vectors are then produced using these 

attributes. Considering a dataset D of n text summaries to classify the data sensitivity levels D = 

{d1, d2, d3, … , dn} where each text summary is represented using one weighted score in terms of 

tf-tdf or CP as di = {w1,w2,w3, …. ,wn}. All the terms appearing in the dataset D build a 

vocabulary, V = {t1, t2, t3, …. , tp} where a feature set Fi = {si, wei} comprising of two features 

(weighted value and word embedding vectors) corresponding to each term ti in the vocabulary. 

We computed all of the weighted scores for each distinct phrase in the evaluation dataset. For 

feature extraction, we will use the following two methods: There are two of them: Class 

Probability (CP) and Term Frequency - Inverse Document Frequency (tfidf). The tfidf is a 

benchmark for word2vec. The goal of the tfidf is to determine a word's importance to a piece of 

writing within a corpus of papers. The outcome of merging tf and idf statistics is this. Idf 

evaluates a word's frequency across the corpus as opposed to tf, which counts how often a word 

appears in a document. We'll base our computations on the following definition of idf: 

𝑖𝑑𝑓(𝑤) = 𝑙𝑜𝑔
𝑛𝑑

𝑑𝑓(𝑑,𝑤)
+1 

where nd denotes the total number of documents and df(d,w) denotes the number of documents 

containing the word w. The baseline is the tfidf compared to word2vec. The tfidf is a technique 

for figuring out a word's importance within a corpus of texts. The tf and idf statistics produced it. 

The idf algorithm determines if a word is common or rare across the corpus, while the tf 

algorithm counts the number of times a word appears in a document. 
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To get tfidf, we tokenized each track from the filtered training data set. Following this, a 

document-word matrix was created, and the total number of words from each note was entered. 

Then, the idf was multiplied by each word individually. The top 40,000 words with the greatest 

tfidf scores were utilized as the bag of word features in one tfidf configuration, while the top 

20,000 words were used in another configuration with a minimum document frequency of 10 and 

a maximum document frequency of 0.8 of the total number of documents. 

On the other hand, the conditional probability 
,j Ck

tCP that indicates how frequently the word tj 

appears when the class Ck is appearing is known as the class probability. CP illustrates the 

significance of a particular term while taking into account class information. For instance, a 

phrase ti is strongly associated with class A if it appears more than thrice in documents annotated 

with that class. 

( ),j Ck

j k

t

k

t c
CP

P c


=  

where P(Ck) is the likelihood of the class Ck. As a result, three weighted scores are used to 

represent each term in document di in the collection. 

( )
0

, ,
j j j

n

j d t t t

d

s s TF IDF CP
=

= =  

Together, the four million pages from MIMIC III and Pubmed were used to create a vector 

of word embeddings. In order to better understand the relationships between words in a 

vocabulary, the FastText WE software generated a 100-dimensional vector space for each word. 

FastText's powerful model has helped to solve a wide variety of issues with natural language, 

such as those involving word morphology and words that aren't in the dictionary. 

To accomplish this, we utilised the Gensim Python software to construct word vectors from 

the four million papers. A vocabulary V was produced consisting of 100-dimensional WE 

vectors for each distinct word in dataset D. Next, the WE vectors are merged with the weighting 

scores to produce the Weighted Word Embedding Vectors, the second stage of the proposed 

statistical feature representation. This means that a simple weighting factor was used to mix the 

WE vectors with the three weighted scores for each phrase tj in the vocabulary V. In the 

vocabulary assignment Tj will be a substitute for the word V. Applying the weighted 

multiplication to an arbitrary term tj and each item of its associated WE vector (wej) yields the 
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three weighted feature vectors HTFj, HIDFj, and HCPj, one for each of the weighting processes 

TF, IDF, and CP.These weighted feature vectors are defined as below: 

,

0
j

n

j t j l

l

HTF TF we
=

=   

,

0
j

n

j t j l

l

HIDF IDF we
=

=   

,

0
j

n

j t j l

l

HCP CP we
=

=   

Figure 2 shows how the combination process is done in detail. 

D) Model Training and Testing 

While these models show great promise, they also have several limitations, such as a lack of 

training data, an excessive reliance on acronyms, and the fact that a single entity can stand in for 

several different entity types depending on the surrounding circumstances. Thus, modern EMR 

models mix language models that were trained on biological information with models that were 

trained independently of context. To address the limitations of newly reported domain-specific 

language models, we developed a context-dependent, fast, and effective language model 

(bioALBERT) for the biomedical domain. To determine how sensitive the data is, bioALBERT 

can be employed. 

To make up for a lack of training data, BioALBERT makes advantage of large biomedical 

corpora during its training ((Lee et.al, 2020)). As an additional measure of sentence coherence 

loss, we developed the state-of-the-art cross-layer parameter sharing methodology. Learning the 

parameters of the first block allows us to apply those same settings to subsequent levels. Finally, 

it was found that in BERT-based models, the size of the embedding is related to the size of the 

buried layer of the transformer block sizes. To help the model construct more precise 

representations, the SOP randomly pairs two words from the training data. To distinguish 

between the dimensions of the hidden layers and the vocabulary embeddings, we adopt 

factorized embedding parameterization, which splits the embedding matrix into two smaller 

matrices. Because of this, we can increase the secret quantity without correspondingly raising the 

vocabulary embedding's value. Since it is optimized for EMR workloads, BioALBERT 

outperforms other SOTA models in terms of usefulness and productivity. 
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Fig. 2. Weighted feature representation 

 

Below you'll find more details regarding BioALBERT's initial training and ongoing fine-

tuning. 

A. BioALBERT's pre-training 

Due to the simplicity and similarity of its architecture to ALBERT's, we will outline the pre-

training processes for BioALBERT in this section. BioALBERT permits the ALBERT model to 

be pre-trained on general text in biomedical corpora through the use of training data from PMC 

full-text articles and PubMed abstracts that contain biological terminology. After fusing all the 

source text files, we got a sentence with the following features: Since we were unable to pre-train 

the model with the PubMed and PMC raw text biomedical corpora, we added the following three 

features: When merging multiple files, a blank line will be added between each file, and lines 

with fewer than 20 characters will be discarded (when combining multiple files). Word count 

wise, PMC has 13.5 billion versus 4.5 billion for PubMed. The ALBERT model's base 

vocabulary was used in conjunction with pre-training on biological corpora to produce our final 

BioALBERT model. Since sentence embeddings are utilized by tokenization, the data was first 
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PubMed+

MIMIC-III 

Preprocessing 

Weighted Scores 

si of term ti 

Fasttext Word  

Embedding (WE) 
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considered to be a string of sentences. Since each document in the input text is separated by a 

blank line, each line in the document is a sentence. It was capped at 512 characters per statement. 

Except for BioALBERT 1.1, all pre-trained models use a learning rate of 0.00176 and a total of 

3125 warm-up steps. 

B. BioALBERT fine-tuning 

This study discusses a few ways in which the BioALBERT contextual summary task could 

be enhanced. It requires marking specific words in a sentence as "designated entities." Diseases, 

species, drugs/proteins, and drugs/chemicals were all represented in the datasets utilized for this 

task. The labels, which are the domain-specific nouns, are the primary inputs for this type of 

learning and prediction. As a clinical resource, please fill out the provided contextual summary 

exercise as accurately as possible using the provided symptoms and ICD 9 codes. When 

compared to pre-training, fine-tuning places far lower demands on computing resources. 

BioALBERT is a great illustration because it uses fewer computational resources and less 

actual memory than similar approaches while still facilitating novel parameter swaps. Word 

embeddings, the foundation of the BioBERT model, are revealed through sentence tokenization-

based fine-tuning for context-specific summary synthesis and the corresponding sensitivity scale. 

We created a fine-tuning task for each of the models we had previously trained using the unique 

dataset. Separate from the standard overview, the dataset now features a dedicated section on 

sensitivity. The weights from the trained model are used as inputs in the present setup. Training 

began with a total of 5336 steps, lower case texts, a batch size of 32, and a learning rate of 1e-5. 

In the past, BioALBERT models were trained using TPUv3-8. All hyper-parameters in ALBERT 

will be set to their default settings unless otherwise specified. There is a list of words in each 

dataset, labelled B, I, and O, where B represents the first word of an entity, I represents the 

words that follow it, and O represents the absence of the entity. To verify the efficacy of our pre-

trained models for the downstream goal, we conducted experiments using the raw data. Using the 

holdout development dataset, the evaluation checkpoint, and the Adam optimizer, the model with 

the best overall performance was chosen. Specifically, PyTorch-transformers derived from 

BERT and XLNet deployments were used in the research. Figure 3 is a time line depicting the 

entirety of the training procedure. Since layer freezing didn't occur during model tuning, it's 

likely that this is what happened. Adam (Kingma et.al, 2014) performed well in the initial 

experiments, but Layer wise Adaptive Large Batch (LAMB) optimizer (Yang et.al, 2019) has 
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proven to be slightly more efficient in terms of training time. When choosing and refining the 

hyperparameters, we considered the outcomes from the training set. When tested with varying 

learning rates, the Transformer model fares poorly, indicating that it is highly sensitive to these 

parameters. Optimal performance was achieved at a learning rate of 7x10-4 or 6x10-4. 

No matter what methods of warming were used, the results were the same. The cased 

version of BERT outperformed the uncased one. Nonetheless, the variations are still barely 

noticeable. At present, only Cased of XLNet is supported. With the significant computational 

cost in mind, we opted for the simpler XLNet version. When comparing BERT and XLNet 

models, the difference in training batch size was 16. Using binary cross entropy with logits, we 

sorted the codes and calculated our confidence in each one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. End-to-end training procedure 

V. RESULTS AND DISCUSSION 

An experimental study has made use of the MIMIC-III dataset, a substantial database of 

patients admitted to the intensive care units of a major tertiary care hospital. The patients who 

were admitted to the intensive care units at Beth Israel Deaconess Medical Center between 2001 

and 2012 are represented in this dataset. Using the expertly annotated dataset, we took advantage 

of the ICD-9 codes that were included. In most cases, we used the preprocessing and data 
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separation methods from (You et.al, 2019). The model was trained using the most recent 

MIMIC-III dataset, validated using data from 1,632 patients, and tested using summaries from 

3,372 patients who had been recently discharged. In addition, we employed the most widely used 

"MIMIC-III-50" parameter which orders the labels by frequency of occurrence. 

Training discharge summaries numbered 8,066, test discharge reports numbered 1,729, 

validation discharge summaries numbered 1,573, and the aim of this research is to extract useful 

semantic information from large amounts of unstructured data. Our research included the entire 

dataset, with a special emphasis on the free-text sections of the clinic notes and the noteevents 

table. Unlike other types of summaries, discharge summaries integrated free-form prose with 

concrete data, giving them a distinct advantage. Discharge reports were written after a diagnosis 

was made, hence information pertaining to patient classification was removed before being 

presented (ICD-9 codes). For instance, we took the recommended number of sensitivity levels 

and distributed them as shown below. Sexual dysfunction and infertility (Level 4), victims of 

sexual violence (Level 5). Fever due to a virus, the common cold, a cough, etc. fall within the 

first category of illnesses. THREE: Extremely Malignant Cancer, Cancers of different types 

(blood, breast, et cetera) are at the Stage 2 level. The sensitivity scale goes from 1 (the least 

sensitive) to 5 (the most sensitive). In this case, the user will have control over how sensitive the 

approach is. Since there are N types of diseases and N categories of diseases (e.g., more than 150 

subtypes of cancer), we've established sensitivity by dividing diseases into categories and 

assigning weights to each. The resulting sensitivity level can range from 1 to 5, as indicated by 

the range of values. The domain, the list of sensitive words, and the sensitivity level of the word 

are all taken into account. The information is arranged in rows for easy processing. The row is 

compared to the list of sensitive phrases to determine the overhead and sensitivity. Table 1 

displays data on the total number of patients, hospital admissions, distinct ICD-9 codes, and 

ICD-9 categories.  

Table 1. Analytics of MIMIC-III dataset 

Dataset File Hospital 

Admissions 

Number of 

patients 

ICD-9 Codes Categories of 

ICD-9 

Complete MIMIC-

III 

58976 46520 6984 943 

Discharge 

Summaries 

52726 41127 6918 942 

Noteevents 58726 41127 6918 942 
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MIMIC-III has access to the full dataset, whereas noteevents and discharge summaries only 

cover the relevant subgroups. The top ten ICD-9 codes and top ten ICD-9 categories are shown 

in Table 2.For training, validation, and testing, the filtered datasets is divided into 50-25-25 

groups. 

Table 2. Top 10 ICD-9 codes and categories and respective admissions 

ICD-9 Codes Admissions  ICD-9 Category Admissions 

4019 20046  401 20646 

4280 12842  427 16774 

42731 12589  276 14712 

41401 12178  272 14212 

5849 8906  414 14081 

25000 8783  250 13818 

2724 8503  428 13330 

51881 7249  518 12997 

5990 6442  285 12404 

53081 6154  584 11147 

 

Due to computational resource limits, the training batch size was reduced from 1,024 for 

BioALBERT basic models to 256 for BioALBERT large models. The training variables are 

detailed in Table 3 (Sun et.al, 2019). 

Table 3. Hyperparameters for pre-training  

Parameters Values/Description  Parameters Values/Description 

Baseline model ALBERT  Size of vocab 30000 

Kernel function GeLU  Optimizer  LAMB 

Number of attention 

heads 

12  Size of training batch 1024 

Number of layers 12  Size of evaluation batch 16 

Hidden layers 768  Maximum length of 

sentence 

512 

Size of embedding 128  Warm-up steps 3125 

 

When compared to other baseline models, BioALBERT's computational expenses were on par, 

and fine-tuning used a lot less processing power than pre-training did. BioALBERT was able to 

learn word embeddings by utilizing novel parameter-sharing strategies, memory-constrained 

hardware, and sentence-level tokenization. Time spent in training was reduced without a 

corresponding decrease in efficacy. 
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During this stage, we employ the BioALBERT LM's training weights. To do this, we employed 

an AdamW optimizer with a learning rate of.000001%. After dividing into 32 groups, we dove 

into our homework. Each word's first letter was capitalized, and sentences were limited to a 

maximum of 128 characters. To get our trained models ready for the 10k training stages that 

came before the fine-tuning, we used a 512-step warm-up. The test data was used to make 

predictions, and the evaluation metric was compared to those of previous SOTA models. All 

tuning settings can be found in Table 4. 

Table 4. Hyperparameters for fine tuning 

Parameters Values/Description 

Optimizer ADAMW 

Size of training batch 32 

Learning rate 0.00001 

Number of training steps 10000 

Warm-up steps 320 

 

The typical validation accuracy of the CP weighting method is 0.494 and the typical loss is 

1.901, as shown in Figure 4. We further highlight that the validation results showed a 0.01 

percentage point error difference between CP and the other weighting techniques (TF and IDF). 

Initial findings, however, showed the best training accuracy and the least loss. All weighting 

strategies shown superior increases in validation accuracy over the control group. The accuracy 

of the proposed WE technique is superior than the other existing techniques. 

 

Fig. 4. Classification Performance metrics 
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Discussion: Success was achieved using the proposed classification model and the CP weighting 

method. About 1% separated CP from the other two methods of weight estimation. Results for 

all weighting methods were also better than in the control trial. To completely understand the 

efficacy of these weighting mechanisms, we must investigate the WE systems' work philosophy. 

Feature vectors can be generated by WE from anything from a single character to an entire 

document. Connections between words and between grammar structures occur instantly. Each of 

the syllables that make up the vector is a forceful argument in favour of the idea it defines. As a 

result, we postulate that altering this representation may have unintended consequences for the 

efficiency of the classification scheme. By combining the TF, IDF, and CP statistical data, we 

found that the weighting algorithms performed well in our situation. The fact that CP also 

performed exceptionally well in school is proof that prior knowledge can enhance accuracy. 

 

VI. CONCLUSION 

Our research here shows how the context-aware EHR was developed using transfer learning 

for biological NLP to evaluate the level of data sensitivity. New applications in biomedical NLP 

have been developed as a result of the availability of biomedical text data and advancements in 

natural language processing (NLP). Language models trained or improved with domain-specific 

corpora perform better than generic models. However, limited corpora and challenges are 

available for biological NLP research at the present time. BioALBERT, a variation of A Lite 

Bidirectional Encoder Representations from Transformers (ALBERT), was used since it has 

previously shown promise when trained on medical and scientific data. In this research, we 

developed a therapeutically relevant multiclass classification strategy for mining EHRs for 

sensitive data. The theoretical evaluation of the proposed system is supported by empirical study. 

The accuracy of the proposed WE technique (97%) is superior than the other existing 

techniques.This research determined the usefulness and efficiency of the proposed work by 

consulting the MIMIC-III database. 
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